LIMITATION ON ENTROPY INCREASE IMPOSED BY FISHER INFORMATION

被引:49
作者
NIKOLOV, B [1 ]
FRIEDEN, BR [1 ]
机构
[1] UNIV ARIZONA, CTR OPT SCI, TUCSON, AZ 85721 USA
来源
PHYSICAL REVIEW E | 1994年 / 49卷 / 06期
关键词
D O I
10.1103/PhysRevE.49.4815
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Consider a system obeying conservation of flow, as in classical particle flow or in relativistic quantum mechanics. In such cases a probability density function p(r\t) may be used to describe the system, where r is particle position and t is time. Let H(t) be the Shannon form of the Boltzmann entropy corresponding to p (r\t). It is found that (dH/dt)max = 1/6 I(t)d/dt [r2(t)], where I(t) is the Fisher information about the centroid of the system, and [r2(t)] is the time-dependent mean-square particle position. A corollary is that, for classical particle flow obeying [r] = 0, positional uncertainty sigma(t) must ever increase with time.
引用
收藏
页码:4815 / 4820
页数:6
相关论文
共 12 条
[1]   THE CONVOLUTION INEQUALITY FOR ENTROPY POWERS [J].
BLACHMAN, NM .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1965, 11 (02) :267-271
[2]  
FOWLER RH, 1966, STATISTICAL MECHANIC, P43
[3]   ESTIMATION OF DISTRIBUTION LAWS, AND PHYSICAL LAWS, BY A PRINCIPLE OF EXTREMIZED PHYSICAL INFORMATION [J].
FRIEDEN, BR .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1993, 198 (1-2) :262-338
[4]   FISHER INFORMATION, DISORDER, AND THE EQUILIBRIUM DISTRIBUTIONS OF PHYSICS [J].
FRIEDEN, BR .
PHYSICAL REVIEW A, 1990, 41 (08) :4265-4276
[5]  
Gibbs J. W., 1961, SCI PAPERS, V1
[6]   GIBBS VS BOLTZMANN ENTROPIES [J].
JAYNES, ET .
AMERICAN JOURNAL OF PHYSICS, 1965, 33 (05) :391-+
[7]  
McCord Morse P., 1953, METHODS THEORETICAL
[8]  
SCHIFF LI, 1955, QUANTUM MECHANICS, P29
[9]  
SCHIFF LI, 1955, QUANTUM MECHANICS, P326
[10]   A MATHEMATICAL THEORY OF COMMUNICATION [J].
SHANNON, CE .
BELL SYSTEM TECHNICAL JOURNAL, 1948, 27 (03) :379-423