AN ALTERNATE CHARACTERIZATION OF INTEGRABILITY

被引:5
作者
DAS, A
HUANG, WJ
机构
[1] Department of Physics and Astronomy, University of Rochester, Rochester
关键词
D O I
10.1063/1.529011
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper will show that the existence of at least three independent symplectic forms (related in a simple way) on the phase space of a dynamical system is a sufficient condition for the integrability of the system. © 1990 American Institute of Physics.
引用
收藏
页码:2603 / 2605
页数:3
相关论文
共 15 条
[1]   ALTERNATIVE LAGRANGIANS AND COMPLETE-INTEGRABILITY - SOME REMARKS [J].
ANTONINI, P ;
MARMO, G ;
RUBANO, C .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 1985, 86 (01) :17-30
[2]   A SYSTEMATIC STUDY OF THE TODA LATTICE [J].
DAS, A ;
OKUBO, S .
ANNALS OF PHYSICS, 1989, 190 (02) :215-232
[3]  
Das A., 1989, INTEGRABLE MODELS, DOI DOI 10.1142/0858
[4]   A NEW CHARACTERIZATION OF COMPLETELY INTEGRABLE SYSTEMS [J].
DEFILIPPO, S ;
VILASI, G ;
MARMO, G ;
SALERNO, M .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 1984, 83 (02) :97-112
[5]  
Faddeev L.D., 1987, HAMILTONIAN METHODS
[6]  
FERRARIO C, 1985, LETT MATH PHYS, V9, P140
[7]   REDUCTION TECHNIQUES FOR INFINITE-DIMENSIONAL HAMILTONIAN-SYSTEMS - SOME IDEAS AND APPLICATIONS [J].
MAGRI, F ;
MOROSI, C ;
RAGNISCO, O .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1985, 99 (01) :115-140
[8]   SIMPLE-MODEL OF INTEGRABLE HAMILTONIAN EQUATION [J].
MAGRI, F .
JOURNAL OF MATHEMATICAL PHYSICS, 1978, 19 (05) :1156-1162
[9]  
Magri F., 1984, QUADERNO S19
[10]  
NEWELL AC, 1985, SOLITONS MATH PHYSIC