Models of the spatial and temporal dynamics of forests that are based on competition between individual plants can be used to predict changes in the abundance of different tree species that result from natural succession or environmental change. These individual-based models can be designed to take into account important physiological and chemical properties of individual species, and thus provide a mechanism for scaling up the predictions of whole-plant physiological process models to intermediate-scale patterns in ecosystems and landscapes. Because plant species differ greatly in such properties as carbon fixation and evapotranspiration rates, models that predict species composition could provide information on the distribution of parameter values used as input for large-scale (e.g., "big leaf") models of regional vegetation-atmosphere interactions.