The effect of the amendment of nutrient solutions with soluble potassium silicate on the response of cucumber (cv. Corona) root and hypocotyl tissues infected by Pythium ultimum was examined by light and electron microscopy, and by energy dispersive X-ray analysis (EDX). Plants were grown in 0 or 1·7 mm Si-amended nutrient solutions, and root and hypocotyl samples were collected at different times after inoculation with P. ultimum. By 48 h after infection, striking differences in the expression of defence reactions were observed between Si-amended and Si-free cucumber plants. Treatment of plants with Si markedly stimulated the accumulation of an electron-dense, phenolic-like material in infected host tissues, and significantly increased the percentage of cells filled with this material. Fungal hyphae colonizing occluded host cells were seriously damaged, and were often reduced to empty hyphal shells. Additionally, Si-treated cucumber plants responded to P. ultimum infection by forming electron-dense layers along primary and secondary cell walls, as well as over pit membranes of xylem vessels. EDX analysis failed to reveal the presence of silica deposits in P. ultimum-infected plants grown in Si-supplemented media. Our results suggest that a relationship exists between Si treatment, resistance to P. ultimum attack, and expression of plant defence mechanisms. © 1992.