CONSTRUCTION OF HIGH-ORDER SYMPLECTIC RUNGE-KUTTA METHODS

被引:13
作者
SUN, G [1 ]
机构
[1] CHINESE ACAD SCI,INST MATH,BEIJING,PEOPLES R CHINA
来源
JOURNAL OF COMPUTATIONAL MATHEMATICS | 1993年 / 11卷 / 03期
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Characterizations of symmetric and symplectic Runge-Kutta methods, which are based on the W-transformation of Hairer and Wanner, are presented. Using these characterizations we, construct two classes of high order symplectic (symmetric and algebraically stable or algebraically stable ) Runge-Kutta methods. They include and extend known classes of high order implicit Runge-Kutta methods.
引用
收藏
页码:250 / 260
页数:11
相关论文
共 13 条
[1]   STABILITY-CRITERIA FOR IMPLICIT RUNGE-KUTTA METHODS [J].
BURRAGE, K ;
BUTCHER, JC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1979, 16 (01) :46-57
[2]  
BUTCHER JC, 1964, MATH COMPUT, V18, P59
[3]   ON SYMMETRICAL RUNGE-KUTTA METHODS OF HIGH-ORDER [J].
CHAN, RPK .
COMPUTING, 1990, 45 (04) :301-309
[4]  
FENG K, 1986, J COMPUT MATH, V4, P279
[5]  
FENG K, 1985, 1984 P BEIJ S DIFF G, P42
[6]   ALGEBRAICALLY STABLE AND IMPLEMENTABLE RUNGE-KUTTA METHODS OF HIGH-ORDER [J].
HAIRER, E ;
WANNER, G .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1981, 18 (06) :1098-1108
[7]  
Hairer E., 1991, SOLVING ORDINARY DIF, DOI [10.1007/978-3-662-09947-6, DOI 10.1007/978-3-662-09947-6]
[8]  
HAIRER E, 1987, SOLVING ORDINARY DIF, V1
[9]  
KUANG ZQ, IN PRESS NECESSARY C
[10]   PERTURBED COLLOCATION AND RUNGE-KUTTA METHODS [J].
NORSETT, SP ;
WANNER, G .
NUMERISCHE MATHEMATIK, 1981, 38 (02) :193-208