Although numerous studies have shown potent antiproliferative and differentiation-inducing effects of 1,25-dihydroxyvitamin D-3 (1,25-(OH)(2)D-3) and its analogs on cells not directly related to bone metabolism, only few reports focussed on the effects of these analogs on bone. We compared the action of several recently developed analogs with that of 1,25-(OH)(2)D-3 on human (MG-63) and rat (ROS 17/2.8) osteoblast-like cells and on in vitro bone resorption. In MG-63 cells the analogs EB1089 and KH1060 were about 166,000 and 14,000 times more potent than 1,25-(OH)(2)D-3 in stimulating type I procollagen and 100 and 6,000 times more potent in stimulating osteocalcin production, respectively. Also in ROS 17/2.8 cells EB1089 and KH1060 were most potent in inducing osteocalcin synthesis. In vitro bone resorption was 2.3 and 17.5 times more potently stimulated by EB1089 and KH1060, respectively. In MG-63 cells, 1,25-(OH)(2)D-3 and the analogs inhibited cell proliferation, whereas both 1,25-(OH)(2)D-3 and the analogs stimulated the growth of ROS 17/2.8 cells. Differences in potency could neither be explained by affinity for the vitamin D receptor nor by a differential involvement of protein kinase C in the action of the analogs. Together, these data show that also in bone the analogs EB1089 and KH1060 are more potent than 1,25-(OH)(2)D-3 but that the potency of the analogs compared to 1,25-(OH)(2)D-3 is dependent on the biological response. On the basis of these observations it can be concluded that the reported reduced calcemic effect in vivo is not the result of a decreased responsiveness of bone to these analogs. Lastly, in view of eventual clinical application of 1,25-(OH)(2)D-3-analogs, the observed stimulation of in vitro bone resorption and growth of an osteosarcoma cell line warrant in vivo studies to further examine these effects.