FINDING ANTIPODAL POINT GRASPS ON IRREGULARLY SHAPED OBJECTS

被引:90
作者
CHEN, IM
BURDICK, JW
机构
[1] Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125
来源
IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION | 1993年 / 9卷 / 04期
关键词
Manipulators;
D O I
10.1109/70.246063
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Two-finger antipodal point grasping of arbitrarily shaped smooth 2-D and 3-D objects is considered. An object function is introduced that maps a finger contact space to the object surface. Conditions are developed to identify the feasible grasping region, F, in the finger contact space. A ''grasping energy function,'' E, is introduced that which is proportional to the distance between two grasping points. The antipodal points correspond to critical points of E in F. Optimization and/or continuation techniques are used to find these critical points. In particular, global optimization techniques are applied to find the ''maximal'' or ''minimal'' grasp. Further, modeling techniques are introduced for representing 2-D and 3-D objects using B-spline curves and spherical product surfaces.
引用
收藏
页码:507 / 512
页数:6
相关论文
共 22 条
[1]  
Barr A. H., 1981, IEEE Computer Graphics and Applications, V1, P11, DOI 10.1109/MCG.1981.1673799
[2]  
Bertsekas D. P, 1982, REINFORCEMENT LEARNI
[3]  
BREMERMANN H, 1970, Mathematical Biosciences, V9, P1, DOI 10.1016/0025-5564(70)90087-8
[4]  
CETIN B, IN PRESS J OPTIMIZAT
[5]  
CHEN IM, 1992, 1992 IEEE INTERNATIONAL CONF ON ROBOTICS AND AUTOMATION : PROCEEDINGS, VOLS 1-3, P2278, DOI 10.1109/ROBOT.1992.219920
[6]  
FAUX D, 1979, COMPUTATIONAL GEOMET
[7]  
FAVERJON B, 1991, IEEE T ROBOTIC AUTOM, P424
[8]  
HONG J, 1990, IEEE T ROBOTIC AUTOM, P1568
[9]  
KELLER HB, 1987, LECTURES NUMERICAL M
[10]   OPTIMIZATION BY SIMULATED ANNEALING [J].
KIRKPATRICK, S ;
GELATT, CD ;
VECCHI, MP .
SCIENCE, 1983, 220 (4598) :671-680