A SPARSE-MATRIX CANONICAL-GRID METHOD FOR SCATTERING BY MANY SCATTERERS

被引:54
作者
CHAN, CH
TSANG, L
机构
[1] Electromagnetics and Remote Sensing Laboratory Department of Electrical Engineering, FT-10 University of Washington Seattle, Seattle, Washington
关键词
SPARSE-MATRIX CANONICAL-GRID METHOD; SCATTERING; EFFICIENT NUMERICAL METHOD; FAST FOURIER TRANSFORM;
D O I
10.1002/mop.4650080217
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A new efficient algorithm based on the decomposition of strong and weak interactions among scatterers is proposed. The weak interactions, which account for the majority of the required CPU time and memory, are calculated using a canonical grid with a translation addition theorem. This facilitates the use of FFT and results in an N log N-type efficiency for CPU and O(N) for memory. (C) 1995 John Wiley & Sons, Inc.
引用
收藏
页码:114 / 118
页数:5
相关论文
共 10 条
  • [1] Tsang L., Chan C.H., Sangani H., Application of a Banded Matrix Iterative Approach to Monte Carlo Simulations of Scattering of Waves by Random Rough Surface: TM Case, Microwave Opt. Technol. Lett., 6, 2, pp. 148-151, (1993)
  • [2] Tsang L., Chan C.H., Pak K., Monte Carlo Simulation of a Two‐Dimensional Random Rough Surface Using the Sparse‐Matrix Flat‐Surface Iterative Approach, Electron. Lett., 29, 13, pp. 1153-1154, (1993)
  • [3] Tsang L., Chan C.H., Pak K., Sangani H., Ishimaru A., Phu P., Monte Carlo Simulations of Large‐Scale Composite Random Rough Surface Scattering Based on the Banded Matrix Iterative Approach, J. Opt. Soc. Am. Ser. A, 11, 2, pp. 691-696, (1994)
  • [4] Tsang L., Chan C.H., Pak K., Backscattering Enhancement of a Two‐Dimensional Random Rough Surface (Three‐Dimensional Scattering) Based on Monte Carlo Simulations, J. Opt. Soc. Am. Ser. A, 11, 2, pp. 711-715, (1994)
  • [5] Li L., Chan C.H., Tsang L., Numerical Simulation of Conical Diffraction of Tapered Electromagnetic Waves from Random Rough Surfaces and Applications to Passive Remote Sensing, Radio Sci., 29, pp. 587-598, (1994)
  • [6] Tsang L., Chan C.H., Pak K., Sangani H., pp. 2028-2031, (1994)
  • [7] Wang Y.M., Chew W.C., A Recursive T‐Matrix Approach for the Solution of Electromagnetic Scattering by Many Spheres, IEEE Trans. Antennas Propagat., 41 AP, 12, pp. 1633-1639, (1993)
  • [8] Rokhlin V., Rapid Solution of Integral Equations of Scattering Theory in Two Dimensions, J. Comput. Phys., 86, pp. 414-439, (1990)
  • [9] Tsang L., Kong J.A., Shin R.T., Theory of Microwave Remote Sensing, (1985)
  • [10] Tsang L., Mandt C.E., Ding K.H., Monte Carlo Simulations of the Extinction Rate of Dense Media with Randomly Distributed Dielectric Spheres Based on Solution of Maxwell's Equations, Optics Letters, 17, 5, (1992)