ADDITIVITY THEOREM FOR MAXIMUM GENUS OF A GRAPH

被引:4
作者
LITTLE, CHC
RINGEISEN, RD
机构
[1] INDIANA UNIV,FT WAYNE,IN 46805
[2] PURDUE UNIV,FT WAYNE,IN 46805
关键词
D O I
10.1016/0012-365X(78)90148-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite, connected graph with no loops or multiple edges. If G is the union of two blocks, then a necessary and sufficient condition is given for the maximum genus of G to be the sum of the maximum genera of its blocks. If in addition the blocks of G are upper embeddable, then a necessary and sufficient condition is given for the upper embeddability of G. © 1978.
引用
收藏
页码:69 / 74
页数:6
相关论文
共 6 条
[1]   GENUS REGIONAL NUMBER AND BETTI NUMBER OF A GRAPH [J].
DUKE, RA .
CANADIAN JOURNAL OF MATHEMATICS, 1966, 18 (04) :817-&
[2]  
Nordhaus E.A., 1971, J COMBINATORIAL TH B, V11, P258
[3]  
Nordhaus E.A., 1972, J COMB THEORY B, V12, P260
[4]  
RINGEISEN RD, ADDITIVITY MAXIMUM G
[5]  
RINGEISEN RD, 1972, GRAPH THEORY APPLICA
[6]  
XUONG NH, 1976, CR ACAD SCI A MATH, V283, P813