NONLINEAR SCHRODINGER AND KORTEWEG DE VRIES ARE REDUCTIONS OF SELF-DUAL YANG-MILLS

被引:129
作者
MASON, LJ
SPARLING, GAJ
机构
[1] UNIV PITTSBURGH,DEPT PHYS & ASTRON,PITTSBURGH,PA 15260
[2] UNIV PITTSBURGH,DEPT MATH & STAT,PITTSBURGH,PA 15260
关键词
D O I
10.1016/0375-9601(89)90964-X
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:29 / 33
页数:5
相关论文
共 10 条
[1]  
Faddeev L. D., 1987, HAMILTONIAN METHODS
[2]   MONOPOLES AND GEODESICS [J].
HITCHIN, NJ .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 83 (04) :579-602
[3]  
KONOPELCHENKO BG, 1987, SPRINGER LECTURE NOT, V270
[4]   SELF-DUAL GAUGE FIELDS [J].
WARD, RS .
PHYSICS LETTERS A, 1977, 61 (02) :81-82
[5]   INTEGRABLE AND SOLVABLE SYSTEMS, AND RELATIONS AMONG THEM [J].
WARD, RS .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1985, 315 (1533) :451-457
[6]   COMPLETELY SOLVABLE GAUGE-FIELD EQUATIONS IN DIMENSION GREATER THAN 4 [J].
WARD, RS .
NUCLEAR PHYSICS B, 1984, 236 (02) :381-396
[7]   ANSATZE FOR SELF-DUAL YANG-MILLS FIELDS [J].
WARD, RS .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1981, 80 (04) :563-574
[8]  
WARD RS, 1986, SPRINGER LECTURE NOT, V246
[9]  
WARD RS, 1983, GEN REL GRAV, V15
[10]  
[No title captured]