Morphine-treated rats exposed to restraint stress show potentiated magnitude and duration of analgesia compared to unstressed rats. The present study was performed to assess the pharmacological characteristics of stress-induced potentiation of opioid analgesia. We tested 10 opioids to determine whether restraint stress treatment would potentiate their ability to produce antinociception indexed by the tail-flick assay. We tested full mu, delta and kappa opioid receptor agonists (fentanyl, meperidine, DPDPE, U50488H, ethylketocyclazocine), and mixed agonist/ antagonists representing a range of receptor selectivities and intrinsic activities (profadol, buprenorphine, pentazocine, butorphanol and nalbuphine). Dose-effect and time-response curves were generated for unrestrained and restrained rats after either subcutaneous (SC) and/or intracerebroventricular (ICV) injections. In restrained rats, all drugs except for SC-administered nalbuphine produced dose- and time-dependent analgesic effects of greater magnitude (1.5-3 times) than they produced in unrestrained rats. However, restrained rats given agonists with high intrinsic activity at the μ receptor displayed the most potent and consistent potentiation of analgesia compared to unrestrained controls. Our results suggest that activation of the μ receptor is of primary importance for restraint to potentiate analgesia, because restrained rats injected with δ and κ agonists displayed potentiation of analgesia only at doses high enough to possibly exceed the selective activation of their respective receptor types. © 1990.