A RESTARTED GMRES METHOD AUGMENTED WITH EIGENVECTORS

被引:213
作者
MORGAN, RB
机构
关键词
GMRES; CONJUGATE GRADIENT; KRYLOV SUBSPACES; ITERATIVE METHODS; NONSYMMETRIC SYSTEMS;
D O I
10.1137/S0895479893253975
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The GMRES method for solving nonsymmetric linear equations is generally used with restarting to reduce storage and orthogonalization costs. Restarting slows down the convergence. However, it is possible to save some important information at the time of the restart. It is proposed that approximate eigenvectors corresponding to a few of the smallest eigenvalues be formed and added to the subspace for GMRES. The convergence can be much faster, and the minimum residual property is retained.
引用
收藏
页码:1154 / 1171
页数:18
相关论文
共 37 条
[2]  
ASHBY S, 1987, THESIS U ILLINOIS UR
[3]  
AXELSSON O, 1985, BIT, V25, P166
[4]   ON THE RATE OF CONVERGENCE OF THE PRECONDITIONED CONJUGATE-GRADIENT METHOD [J].
AXELSSON, O ;
LINDSKOG, G .
NUMERISCHE MATHEMATIK, 1986, 48 (05) :499-523
[5]  
CLINE AK, 1976, ICASE7622 NASA LANGL
[6]   BLOCK PRECONDITIONING FOR THE CONJUGATE-GRADIENT METHOD [J].
CONCUS, P ;
GOLUB, GH ;
MEURANT, G .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1985, 6 (01) :220-252
[7]  
Concus P., 1976, SPARSE MATRIX COMPUT, P309
[8]  
CRAIG EJ, 1955, J MATH PHYS, V34, P64
[9]  
Elman H. C., 1982, THESIS YALE U NEW HA
[10]   A HYBRID CHEBYSHEV KRYLOV SUBSPACE ALGORITHM FOR SOLVING NONSYMMETRIC SYSTEMS OF LINEAR-EQUATIONS [J].
ELMAN, HC ;
SAAD, Y ;
SAYLOR, PE .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1986, 7 (03) :840-855