REMARKS ON THE QUASI-CLASSICAL PROPAGATOR OF AREA-PRESERVING MAPS

被引:18
作者
JUNKER, G
LESCHKE, H
机构
[1] Institut für Theoretische Physik, Universität Erlangen-Nürnberg, W-8520 Erlangen
来源
PHYSICA D | 1992年 / 56卷 / 2-3期
关键词
D O I
10.1016/0167-2789(92)90020-N
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The path-integral-like expression for the quantum propagator of discrete-time area-preserving maps is evaluated approximately by neglecting higher than second-order terms in an expansion of the action about the classical paths. In the resulting quasi-classical approximation for the propagator special attention is paid to the recursive nature of its amplitude and the possible appearance of Maslov-like phases. Using a further approximation for the amplitude we arrive at explicit expressions which clearly show the differences between the contributions of stable and unstable classical paths. An estimate for the range of validity for the quasi-classical approximation is also given.
引用
收藏
页码:135 / 150
页数:16
相关论文
共 21 条
[1]  
Berry M. V., COMMUNICATION
[2]   QUANTUM MAPS [J].
BERRY, MV ;
BALAZS, NL ;
TABOR, M ;
VOROS, A .
ANNALS OF PHYSICS, 1979, 122 (01) :26-63
[3]  
BLUMEL R, 1984, PHYS LETT A, V103, P353, DOI 10.1016/0375-9601(84)90129-4
[4]   SMOOTHED WAVE-FUNCTIONS OF CHAOTIC QUANTUM-SYSTEMS [J].
BOGOMOLNY, EB .
PHYSICA D, 1988, 31 (02) :169-189
[5]   ON THE STABILITY OF PERIODIC-ORBITS OF TWO-DIMENSIONAL MAPPINGS [J].
BOUNTIS, T ;
HELLEMAN, RHG .
JOURNAL OF MATHEMATICAL PHYSICS, 1981, 22 (09) :1867-1877
[6]  
Casati G., 1979, LECTURE NOTES PHYSIC, V93, P334, DOI DOI 10.1007/BFB0021757
[7]   QUANTUM-MECHANICS OF CLASSICALLY NON-INTEGRABLE SYSTEMS [J].
ECKHARDT, B .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1988, 163 (04) :205-297
[8]   TEMPORAL CROSSOVER FROM CLASSICAL TO QUANTAL BEHAVIOR NEAR DYNAMIC CRITICAL-POINTS [J].
FISHMAN, S ;
GREMPEL, DR ;
PRANGE, RE .
PHYSICAL REVIEW A, 1987, 36 (01) :289-305
[9]   INTEGRATION IN FUNCTIONAL SPACES AND ITS APPLICATIONS IN QUANTUM PHYSICS [J].
GELFAND, IM ;
YAGLOM, AM .
JOURNAL OF MATHEMATICAL PHYSICS, 1960, 1 (01) :48-69
[10]   METHOD FOR DETERMINING A STOCHASTIC TRANSITION [J].
GREENE, JM .
JOURNAL OF MATHEMATICAL PHYSICS, 1979, 20 (06) :1183-1201