DISCONJUGACY FOR LINEAR HAMILTONIAN DIFFERENCE-SYSTEMS

被引:48
作者
ERBE, LH
YAN, PX
机构
[1] Department of Mathematics, University of Alberta, Edmonton
关键词
D O I
10.1016/0022-247X(92)90212-V
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the linear Hamiltonian difference system Δy(t) = B(t) y(t + 1) + c(t) z(t) Δz(t) = -A(t) y(t + 1) -B* (t) z(t), where A(t), C(t) are Hermitian matrices with I - B(t) and C(t) invertible (I is identity). Disconjugacy criteria analogous to those for linear Hamiltonian differential systems are obtained by a discrete Riccati method. © 1992.
引用
收藏
页码:355 / 367
页数:13
相关论文
共 6 条
[1]   RICCATI MATRIX DIFFERENCE-EQUATIONS AND DISCONJUGACY OF DISCRETE LINEAR-SYSTEMS [J].
AHLBRANDT, CD ;
HOOKER, JW .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1988, 19 (05) :1183-1197
[2]  
AHLBRANDT CD, 1987, CANADIAN MATH SOC C, V8, P3
[3]   OSCILLATION AND NONOSCILLATION FOR SYSTEMS OF SELF-ADJOINT 2ND-ORDER DIFFERENCE-EQUATIONS [J].
CHEN, S ;
ERBE, LH .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1989, 20 (04) :939-949
[4]   RICCATI TECHNIQUES AND DISCRETE OSCILLATIONS [J].
CHEN, SZ ;
ERBE, LH .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1989, 142 (02) :468-487
[5]  
COPPEL WA, 1971, LECT NOTES MATH, P34
[6]  
PETERSON A, IN PRESS DISCONJUGAC