PERIODIC CLUSTERING IN THE SPECTRUM OF QUASI-PERIODIC KRONIG-PENNEY MODELS

被引:30
作者
BAAKE, M
JOSEPH, D
KRAMER, P
机构
[1] Institut für Theoretische Physik, Universität Tübingen, D-7400 Tübingen
关键词
D O I
10.1016/0375-9601(92)90575-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The continuous Schrodinger equation is discussed for the Fibonacci chain and its generalizations and compared to the tight-binding approximation. For Kronig-Penney like models, the resulting pseudo spectrum of the well-known trace map has Cantor like structures, but a subclass of models additionally shows periodic clustering with respect to the wave number k. The clusters appear at the zeros of the invariant of the trace map as a function of k. From a matrix generalization of the trace map we compute the forward scattering of the chain and find the same periodic clustering. We briefly discuss how these results extend to more general non-periodic examples.
引用
收藏
页码:199 / 208
页数:10
相关论文
共 36 条
[1]   IDEAL AND DEFECTIVE VERTEX CONFIGURATIONS IN THE PLANAR OCTAGONAL QUASILATTICE [J].
BAAKE, M ;
JOSEPH, D .
PHYSICAL REVIEW B, 1990, 42 (13) :8091-8102
[2]  
BAAKE M, 1992, PREPRINT
[3]  
BARGMANN V, 1961, COMMUN PURE APPL MAT, V14, P829
[4]   SPECTRAL PROPERTIES OF A TIGHT-BINDING HAMILTONIAN WITH PERIOD DOUBLING POTENTIAL [J].
BELLISSARD, J ;
BOVIER, A ;
GHEZ, JM .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 135 (02) :379-399
[5]   QUASI-PERIODIC INTERACTION WITH A METAL-INSULATOR-TRANSITION [J].
BELLISSARD, J ;
FORMOSO, A ;
LIMA, R ;
TESTARD, D .
PHYSICAL REVIEW B, 1982, 26 (06) :3024-3030
[6]  
BELLISSARD J, CPT90P2426 MARS PREP
[7]   SYMBOLIC DYNAMICS FOR THE RENORMALIZATION MAP OF A QUASI-PERIODIC SCHRODINGER-EQUATION [J].
CASDAGLI, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 107 (02) :295-318
[8]  
DEKRONIG RL, 1931, P ROY SOC LOND A MAT, V130, P499
[9]  
FRICKE R, 1897, VORLESUNGEN THEORIE, V2, P365
[10]   THE KRONIG-PENNEY MODEL ON A GENERALIZED FIBONACCI LATTICE [J].
GHOSH, PK .
PHYSICS LETTERS A, 1991, 161 (02) :153-157