CRITICAL-BEHAVIOR OF THE 3-DIMENSIONAL RANDOM-FIELD ISING-MODEL - 2-EXPONENT SCALING AND DISCONTINUOUS TRANSITION

被引:125
作者
RIEGER, H [1 ]
机构
[1] FORSCHUNGSZENTRUM JULICH, FORSCHUNGSZENTRUM, HLRZ, D-52425 JULICH, GERMANY
来源
PHYSICAL REVIEW B | 1995年 / 52卷 / 09期
关键词
D O I
10.1103/PhysRevB.52.6659
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In extensive Monte Carlo simulations the phase transition of the random-field Ising model in three dimensions is investigated. The values of the critical exponents are determined via finite-size scaling. For a Gaussian distribution of the random fields it is xi diverges with an exponent nu = 1.1 +/- 0.2 at the critical temperature and that chi similar to xi(2-eta) with eta = 0.50 +/- 0.05 for the connected susceptibility and chi(dis) similar to xi(4-eta) with eta = 1.03 +/- 0.05 for the disconnected susceptibility. Together with the amplitude ratio A = lim(T) (-->) (Tc), chi(dis)/chi(2)(h(r)/T)(2) being close to one this gives further support for a two-exponent scaling scenario implying eta = 2 eta. The magnetization behaves discontinuously at the transition, i.e., beta = 0. However, no divergence for the specific heat and in particular no latent heat is found. Also the probability distribution of the magnetization does not show a multipeak structure that would be characteristic for the phase coexistence at first-order phase-transition points.
引用
收藏
页码:6659 / 6667
页数:9
相关论文
共 43 条
[1]   TRICRITICAL POINTS IN SYSTEMS WITH RANDOM FIELDS [J].
AHARONY, A .
PHYSICAL REVIEW B, 1978, 18 (07) :3318-3327
[2]   LOWERING OF DIMENSIONALITY IN PHASE-TRANSITIONS WITH RANDOM FIELDS [J].
AHARONY, A ;
IMRY, Y ;
MA, SK .
PHYSICAL REVIEW LETTERS, 1976, 37 (20) :1364-1367
[3]   SOME NUMERICAL RESULTS ON KONDO PROBLEM AND INVERSE SQUARE ONE-DIMENSIONAL ISING MODEL [J].
ANDERSON, PW ;
YUVAL, G .
JOURNAL OF PHYSICS PART C SOLID STATE PHYSICS, 1971, 4 (05) :607-&
[4]  
[Anonymous], EUROPHYS LETT
[5]   THE RANDOM FIELD ISING-MODEL [J].
BELANGER, DP ;
YOUNG, AP .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1991, 100 (1-3) :272-291
[6]   RANDOM-FIELD CRITICAL-BEHAVIOR OF A D=3 ISING SYSTEM - NEUTRON-SCATTERING STUDIES OF FE0.6ZN0.4F2 [J].
BELANGER, DP ;
KING, AR ;
JACCARINO, V .
PHYSICAL REVIEW B, 1985, 31 (07) :4538-4547
[7]   FINITE-SIZE SCALING AT 1ST-ORDER PHASE-TRANSITIONS [J].
BINDER, K ;
LANDAU, DP .
PHYSICAL REVIEW B, 1984, 30 (03) :1477-1485
[8]  
BIRGENEAU RJ, 1985, PHYS REV LETT, V54, P2174
[9]   SCALING THEORY OF THE RANDOM-FIELD ISING-MODEL [J].
BRAY, AJ ;
MOORE, MA .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1985, 18 (28) :L927-L933
[10]   LOWER CRITICAL DIMENSION FOR THE RANDOM-FIELD ISING-MODEL [J].
BRICMONT, J ;
KUPIAINEN, A .
PHYSICAL REVIEW LETTERS, 1987, 59 (16) :1829-1832