CLASSIFICATION SCHEME FOR TWO-DIMENSIONAL ERMAKOV-TYPE SYSTEMS AND GENERALIZATIONS

被引:23
作者
SARLET, W [1 ]
RAY, JR [1 ]
机构
[1] CLEMSON UNIV,DEPT PHYS & ASTRON,CLEMSON,SC 29631
关键词
D O I
10.1063/1.524812
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:2504 / 2511
页数:8
相关论文
共 28 条
[1]  
Crespo Da Silva MRM., 1974, INT J NONLIN MECH, V9, P241, DOI DOI 10.1016/0020-7462(74)90039-0
[2]   SECOND-ORDER DIFFERENTIAL EQUATIONS: CONDITIONS OF COMPLETE INTEGRABILITY [J].
Leach, P. G. L. .
APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2008, 2 (02) :123-145
[3]  
GUNTHER NJ, 1977, J MATH PHYS, V18, P572, DOI 10.1063/1.523339
[4]   TIME-DEPENDENT DYNAMICAL SYMMETRIES AND CONSTANTS OF MOTION .3. TIME-DEPENDENT HARMONIC-OSCILLATOR [J].
KATZIN, GH ;
LEVINE, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1977, 18 (06) :1267-1274
[7]   THEORY OF TIME-DEPENDENT LINEAR CANONICAL TRANSFORMATIONS AS APPLIED TO HAMILTONIANS OF HARMONIC-OSCILLATOR TYPE [J].
LEACH, PGL .
JOURNAL OF MATHEMATICAL PHYSICS, 1977, 18 (08) :1608-1611
[8]  
Lewis Henry Euclid, COMMUNICATION
[10]   AN EXACT QUANTUM THEORY OF TIME-DEPENDENT HARMONIC OSCILLATOR AND OF A CHARGED PARTICLE IN A TIME-DEPENDENT ELECTROMAGNETIC FIELD [J].
LEWIS, HR ;
RIESENFELD, WB .
JOURNAL OF MATHEMATICAL PHYSICS, 1969, 10 (08) :1458-+