FROM THE OMEGA-INFINITY-ALGEBRA TO ITS CENTRAL EXTENSION - A TAU-FUNCTION APPROACH

被引:44
作者
ADLER, M
SHIOTA, T
VANMOERBEKE, P
机构
[1] KYOTO UNIV,DEPT MATH,KYOTO 606,JAPAN
[2] UNIV CATHOLIQUE LOUVAIN,B-1348 LOUVAIN,BELGIUM
基金
美国国家科学基金会;
关键词
D O I
10.1016/0375-9601(94)00306-A
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The KP hierarchy, deformations of pseudo-differential operators L of order one, admits a w(infinity)-algebra of symmetries Y(z)alpha(partial derivative/partial derivative(z))beta, which are vector fields transversal to and commuting with the KP hierarchy. Expressed in terms of L and another pseudo-differential operator M (introduced by Orlov and coworkers) satisfying [L,M] = 1, these vector fields act on the wave function PSI (a properly normalized eigenfunction of L) as Y(z)alpha(partial derivative/partial derivative(z))beta PSI = -(M(beta) L(alpha))-PSI. Introducing a generating function Y(N)PSI = N-PSI, with N = (mu - lambda) exp[(mu - lambda)M]delta(lambda, L), for the algebra of symmetries w(infinity) on PSI and taking into account the well-known representation of PSI(t,z) = [e-eta tau(tBAR)/tau(tBAR)] exp(SIGMA1infinity tBAR(i)z(i)), in terms of the tau-function, when eta = SIGMA(i=1)infinity(z-i/i)(partial derivative/partial derivative t(i)). We show a precise relationship between Y(N) and the Date-Jimbo-Kashiwara-Miwa vertex operator X(t, lambda, mu) = exp[SIGMA1infinity (mu(i) - lambda(i))t(i)] exp[SIGMA1infinity (lambda-i-mu-i) (1/i)(partial derivative/partial derivative t(i))], a generating function of the W(infinity)-algebra of symmetries (with central extension) on tau, to wit Y(N) log PSI = (e-eta-1)X log tau, where Y(N) log and X log act on PSI and tau as logarithmic derivatives, with respect to the vector fields Y(N) and X.
引用
收藏
页码:33 / 43
页数:11
相关论文
共 30 条
[1]   A MATRIX INTEGRAL SOLUTION TO 2-DIMENSIONAL W(P)-GRAVITY [J].
ADLER, M ;
VANMOERBEKE, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 147 (01) :25-56
[2]  
ADLER M, IN PRESS DUKE MATH J
[3]  
ADLER M, 1994, IN PRESS COMMUN MATH
[4]   A GENERALIZED SATO EQUATION AND THE W-INFINITY ALGEBRA [J].
AOYAMA, S ;
KODAMA, Y .
PHYSICS LETTERS B, 1992, 278 (1-2) :56-62
[5]   EXACTLY SOLVABLE FIELD-THEORIES OF CLOSED STRINGS [J].
BREZIN, E ;
KAZAKOV, VA .
PHYSICS LETTERS B, 1990, 236 (02) :144-150
[6]  
DATE E, 1983, 1981 P RIMS S NONL I, P39
[7]  
DICKEY L, 1991, SOLITON EQUATIONS IN
[8]  
DICKEY LA, 1994, IN PRESS COMMUN MATH
[9]  
DICKEY LA, LECTURES CLASSICAL W
[10]   DIFFERENTIAL-EQUATIONS IN THE SPECTRAL PARAMETER [J].
DUISTERMAAT, JJ ;
GRUNBAUM, FA .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 103 (02) :177-240