On the structure of the Mandelbar set

被引:49
作者
Crowe, W. D. [1 ]
Hasson, R. [1 ]
Rippon, P. J. [1 ]
Strain-Clark, P. E. D. [1 ]
机构
[1] Open Univ, Fac Math, Milton Keynes MK7 6AA, Bucks, England
关键词
D O I
10.1088/0951-7715/2/4/003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the bifurcation diagram for iterates of the non-analytic maps z -> f(c)(z) = (z) over bar (2) + c, where c epsilon C. The set M-BAR = {c : f(c)(n)(0) negated right arrow}, which we call the Mandlebar set, displays many similarities to the Mandelbrot set. However, bifurcotions in M-BAR can take place across boundary arcs rather than through boundary points.
引用
收藏
页码:541 / 553
页数:13
相关论文
共 8 条
[1]  
BAKER IN, 1989, COMPLEX VAR IN PRESS
[2]   COMPLEX ANALYTIC DYNAMICS ON THE RIEMANN SPHERE [J].
BLANCHARD, P .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 11 (01) :85-141
[3]   ITERATES OF MAPS WITH SYMMETRY [J].
CHOSSAT, P ;
GOLUBITSKY, M .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1988, 19 (06) :1259-1270
[4]  
DOUADY A, 1982, CR ACAD SCI I-MATH, V294, P123
[5]  
FATOU P, 1919, B SOC MATH FRANCE, V47, P161
[6]  
Fatou P., 1920, B SOC MATH FR, V48, P208
[7]  
FATOU P, 1920, B SOC MATH FRANCE, V48, P33
[8]  
[No title captured]