CONTROLLING OF CHAOTIC MOTION BY CHAOS AND NOISE SIGNALS IN A LOGISTIC MAP AND A BONHOEFFER-VAN DER POL OSCILLATOR

被引:52
作者
RAJASEKAR, S
机构
[1] Department of Physics, Manonmaniam Sundaranar University, Tirunelveli 627 002, Tamilnadu
来源
PHYSICAL REVIEW E | 1995年 / 51卷 / 01期
关键词
D O I
10.1103/PhysRevE.51.775
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The possibility of the conversion of a chaotic attractor to a strange but nonchaotic attractor is investigated numerically in both a discrete system, the logistic map, and in a continuous dynamical system, the Bonhoeffer-van der Pol oscillator. A suppression of the chaotic property, namely, the sensitive dependence on initial states, is found when an appropriate (i) chaotic signal and (ii) Gaussian white noise are added. A strange but nonchaotic attractor is shown to occur for some ranges of amplitude of the external perturbation. The controlled orbit is characterized by the Lyapunov exponent, correlation dimension, power spectrum, and return map. © 1995 The American Physical Society.
引用
收藏
页码:775 / 778
页数:4
相关论文
共 20 条
[1]   CONTROLLING UNSTABLE PERIODIC-ORBITS BY A DELAYED CONTINUOUS FEEDBACK [J].
BIELAWSKI, S ;
DEROZIER, D ;
GLORIEUX, P .
PHYSICAL REVIEW E, 1994, 49 (02) :R971-R974
[2]   STOCHASTIC RESONANCE AND CRISES [J].
CARROLL, TL ;
PECORA, LM .
PHYSICAL REVIEW LETTERS, 1993, 70 (05) :576-579
[3]   DIMENSIONS OF STRANGE NONCHAOTIC ATTRACTORS [J].
DING, MZ ;
GREBOGI, C ;
OTT, E .
PHYSICS LETTERS A, 1989, 137 (4-5) :167-172
[4]   EXPERIMENTAL-OBSERVATION OF A STRANGE NONCHAOTIC ATTRACTOR [J].
DITTO, WL ;
SPANO, ML ;
SAVAGE, HT ;
RAUSEO, SN ;
HEAGY, J ;
OTT, E .
PHYSICAL REVIEW LETTERS, 1990, 65 (05) :533-536
[5]   SYNCHRONIZING CHAOS FROM ELECTRONIC PHASE-LOCKED LOOPS [J].
Endo, Tetsuro ;
Chua, Leon O. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1991, 1 (03) :701-710
[6]   DIMENSIONS AND ENTROPIES OF STRANGE ATTRACTORS FROM A FLUCTUATING DYNAMICS APPROACH [J].
GRASSBERGER, P ;
PROCACCIA, I .
PHYSICA D, 1984, 13 (1-2) :34-54
[7]   STRANGE ATTRACTORS THAT ARE NOT CHAOTIC [J].
GREBOGI, C ;
OTT, E ;
PELIKAN, S ;
YORKE, JA .
PHYSICA D, 1984, 13 (1-2) :261-268
[8]  
Heagy J., 1991, J NONLINEAR SCI, V1, P423
[9]   DYNAMICS OF ADAPTIVE SYSTEMS [J].
HUBERMAN, BA ;
LUMER, E .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1990, 37 (04) :547-550
[10]   A NOTE ON RANDOMNESS AND STRANGE BEHAVIOR [J].
KAPITANIAK, T ;
ELNASCHIE, MS .
PHYSICS LETTERS A, 1991, 154 (5-6) :249-253