TOPOLOGY AND QUANTIZATION OF ABELIAN SIGMA-MODEL IN (1+1) DIMENSIONS

被引:4
作者
TANIMURA, S
机构
[1] Department of Physics, Nagoya University, Nagoya
关键词
D O I
10.1016/0370-2693(94)91297-1
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The abelian sigma model in (1 + 1) dimensions has a manifold-valued field phi: S-1 --> S-1. An algebra of the quantum field is defined respecting the topological aspect of the model. It is shown that when a central extension is introduced into the algebra, the winding operator and the momenta operators satisfy anomalous commutators. We obtain an infinite number of inequivalent Hilbert spaces, which are characterized by a central extension and a continuous parameter alpha (0 less than or equal to alpha less than or equal to 1).
引用
收藏
页码:57 / 62
页数:6
相关论文
共 12 条
[1]   THE GEOMETRY OF INEQUIVALENT QUANTIZATIONS [J].
LANDSMAN, NP ;
LINDEN, N .
NUCLEAR PHYSICS B, 1991, 365 (01) :121-160
[2]  
Mackey G. W., 1968, INDUCED REPRESENTATI
[3]   TOROIDAL ORBIFOLD MODELS WITH A WESS-ZUMINO TERM [J].
MADSEN, JO ;
SAKAMOTO, M .
PHYSICS LETTERS B, 1994, 322 (1-2) :91-96
[4]   SOLITON OPERATORS FOR QUANTIZED SINE-GORDON EQUATION [J].
MANDELSTAM, S .
PHYSICAL REVIEW D, 1975, 11 (10) :3026-3030
[5]   A NOTE ON TOROIDAL COMPACTIFICATION OF HETEROTIC STRING THEORY [J].
NARAIN, KS ;
SARMADI, MH ;
WITTEN, E .
NUCLEAR PHYSICS B, 1987, 279 (3-4) :369-379
[6]   FUNDAMENTAL ALGEBRA FOR QUANTUM-MECHANICS ON SD AND GAUGE POTENTIALS [J].
OHNUKI, Y ;
KITAKADO, S .
JOURNAL OF MATHEMATICAL PHYSICS, 1993, 34 (07) :2827-2851
[7]  
Pressley A., 1986, LOOP GROUPS
[8]   FERMIONS FROM BOSONS IN 3+1 DIMENSIONS THROUGH ANOMALOUS COMMUTATORS [J].
RAJEEV, SG .
PHYSICAL REVIEW D, 1984, 29 (12) :2944-2947
[9]   TOPOLOGICAL ASPECTS OF AN ANTISYMMETRIC BACKGROUND FIELD ON ORBIFOLDS [J].
SAKAMOTO, M .
NUCLEAR PHYSICS B, 1994, 414 (1-2) :267-298
[10]   UNITARY REPRESENTATIONS OF SOME INFINITE DIMENSIONAL GROUPS [J].
SEGAL, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1981, 80 (03) :301-342