SPECTRAL ASYMPTOTICS FOR MANIFOLDS WITH CYLINDRICAL ENDS

被引:29
作者
CHRISTIANSEN, T [1 ]
ZWORSKI, M [1 ]
机构
[1] JOHNS HOPKINS UNIV,DEPT MATH,BALTIMORE,MD 21218
关键词
EIGENVALUES; SCATTERING PHASE; MANIFOLDS WITH CYLINDRICAL ENDS;
D O I
10.5802/aif.1455
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The spectrum of the Laplacian on manifolds with cylindrical ends consists of continuous spectrum of locally finite multiplicity and embedded eigenvalues. We prove a Weyl-type asymptotic formula for the sum of the number of embedded eigenvalues and the scattering phase. In particular, we obtain the optimal upper bound on the number of embedded eigenvalues less than or equal to r(2), O(r(n)), where n is the dimension of the manifold.
引用
收藏
页码:251 / 263
页数:13
相关论文
共 14 条
  • [1] BIRMAN MS, 1962, DOKL AKAD NAUK SSSR+, V144, P475
  • [2] CHRISTIANSEN T, IN PRESS J FUNCT ANA
  • [3] DEVERDIERE YC, 1983, ANN I FOURIER, V33, P89
  • [4] DONNELLY H, 1984, MICH MATH J, V31, P349
  • [5] FROESE R, 1993, INT MATH RES NOTICES, V10, P275
  • [6] HELFFER B, 1980, SEMICLASSICAL ANAL S
  • [7] SPECTRAL FUNCTION OF AN ELLIPTIC OPERATOR
    HORMANDER, L
    [J]. ACTA MATHEMATICA UPPSALA, 1968, 121 (3-4): : 193 - +
  • [8] Lax P. D., 1976, ANN MATH STUDIES, V87
  • [9] Melrose R.B., 1993, ATIYAH PATODI SINGER
  • [10] MELROSE RB, 1988, COMMUN PART DIFF EQ, V13, P1421