ON THE EXISTENCE OF RADIAL SOLUTIONS OF QUASI-LINEAR ELLIPTIC-EQUATIONS

被引:18
作者
KICHENASSAMY, S [1 ]
SMOLLER, J [1 ]
机构
[1] UNIV MICHIGAN,DEPT MATH,ANN ARBOR,MI 48109
关键词
D O I
10.1088/0951-7715/3/3/008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The authors give a method for proving the existence of (positive) radial solutions of quasi-linear elliptic equations taking into account the variation of lower-order terms. They find solutions of equations having oscillating nonlinearities under less restrictive conditions than those needed for variational or topological methods. They exhibit simple variational problems having a continuum of solutions. They also obtain invariant regions in C 1 for related parabolic problems.
引用
收藏
页码:677 / 694
页数:18
相关论文
共 25 条
[1]   A NOTE ON DEGREE THEORY FOR GRADIENT MAPPINGS [J].
AMANN, H .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 85 (04) :591-595
[2]   STABILIZATION OF SOLUTIONS OF A DEGENERATE NON-LINEAR DIFFUSION PROBLEM [J].
ARONSON, D ;
CRANDALL, MG ;
PELETIER, LA .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1982, 6 (10) :1001-1022
[3]  
Bandle C., 1980, ISOPERIMETRIC INEQUA
[4]  
BROWDER F, 1966, PROBLEMES NONLINEAIR, P57204
[5]   EXISTENCE OF POSITIVE SOLUTIONS FOR A CLASS OF SEMI-LINEAR ELLIPTIC BOUNDARY-VALUE PROBLEMS [J].
BROWN, KJ ;
BUDIN, H .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1979, 10 (05) :875-883
[6]   POSITIVELY INVARIANT REGIONS FOR SYSTEMS OF NONLINEAR DIFFUSION EQUATIONS [J].
CHUEH, KN ;
CONLEY, CC ;
SMOLLER, JA .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1977, 26 (02) :373-392
[7]  
CONLEY CC, 1980, SPRINGER LECT NOTES, V38, P473
[8]  
DIAZ JI, 1990, UNPUB
[9]   SYMMETRY AND RELATED PROPERTIES VIA THE MAXIMUM PRINCIPLE [J].
GIDAS, B ;
NI, WM ;
NIRENBERG, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 68 (03) :209-243
[10]  
Gilbarg D., 1983, ELLIPTIC PARTIAL DIF