BATALIN-FRADKIN QUANTIZATION OF ANOMALOUS CHIRAL GAUGE-THEORIES

被引:34
作者
BANERJEE, R
ROTHE, HJ
ROTHE, KD
机构
[1] Institut für Theoretische Physik, Universität Heidelberg, D-69120 Heidelberg
[2] S. N. Bose National Centre for Basic Sciences
来源
PHYSICAL REVIEW D | 1994年 / 49卷 / 10期
关键词
D O I
10.1103/PhysRevD.49.5438
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We quantize two-dimensional anomalous chiral gauge theories by following the Batalin-Fradkin prescription for converting second-class systems to first-class ones. Because of the chiral anomaly, the classical Poisson brackets of the Batalin-Fradkin scheme must be replaced by anomalous Poisson brackets in the fermionic formulation. With respect to these brackets the first-class constraints, the BRST charge, and the unitarizing Hamiltonian are explicitly constructed. The partition function is computed for different gauge choices. The unitary gauge and the conventional Faddeev-Popov-like gauges are analyzed in detail. In the latter gauges we obtain generalized Wess-Zumino-type actions.
引用
收藏
页码:5438 / 5445
页数:8
相关论文
共 27 条
[1]   QUANTIZATION OF GAUGE-THEORIES WITH WEYL FERMIONS [J].
BABELON, O ;
SCHAPOSNIK, FA ;
VIALLET, CM .
PHYSICS LETTERS B, 1986, 177 (3-4) :385-388
[2]   ONE-PARAMETER CLASS OF SOLUTIONS IN THE CHIRAL SCHWINGER MODEL [J].
BANERJEE, R .
PHYSICAL REVIEW LETTERS, 1986, 56 (18) :1889-1892
[3]   OPERATOR QUANTIZATION AND ABELIZATION OF DYNAMIC-SYSTEMS SUBJECT TO 1ST-CLASS CONSTRAINTS [J].
BATALIN, IA ;
FRADKIN, ES .
RIVISTA DEL NUOVO CIMENTO, 1986, 9 (10) :1-48
[4]   OPERATORIAL QUANTIZATION OF DYNAMIC-SYSTEMS SUBJECT TO 2ND CLASS CONSTRAINTS [J].
BATALIN, IA ;
FRADKIN, ES .
NUCLEAR PHYSICS B, 1987, 279 (3-4) :514-528
[5]   OPERATOR QUANTIZATION OF RELATIVISTIC DYNAMICAL-SYSTEMS SUBJECT TO 1ST CLASS CONSTRAINTS [J].
BATALIN, IA ;
FRADKIN, ES .
PHYSICS LETTERS B, 1983, 128 (05) :303-308
[6]   RENORMALIZATION OF GAUGE THEORIES [J].
BECCHI, C ;
ROUET, A ;
STORA, R .
ANNALS OF PHYSICS, 1976, 98 (02) :287-321
[7]   APPLICATIONS OF CHIRAL U (6) BYU (6) ALGEBRA OF CURRENT DENSITIES [J].
BJORKEN, JD .
PHYSICAL REVIEW, 1966, 148 (04) :1467-&
[8]  
Dirac P.A.M, 1964, LECT QUANTUM MECH
[9]   FEYNMAN DIAGRAMS FOR YANG-MILLS FIELD [J].
FADDEEV, LD ;
POPOV, VN .
PHYSICS LETTERS B, 1967, B 25 (01) :29-&
[10]  
FADDEEV LD, 1970, THEOR MATH PHYS, V1, P1