GROUP AUTOMORPHISMS WITH FINITE ENTROPY

被引:3
作者
AOKI, N
机构
[1] Department of Mathematics, Tokyo Metropolitan University, Tokyo
来源
MONATSHEFTE FUR MATHEMATIK | 1979年 / 88卷 / 04期
关键词
D O I
10.1007/BF01534246
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A compact metrie abelian group X with the normalized Haar measure is a Lebesgue probability space. A group automorphism σ of X is an invertible measure preserving transformation of the probability space. This paper is to show that if the entropy of σ is finite, then there exist totally disconnected subgroups H and N, a finite-dimensional subgroup S and a subgroup T satisfying the conditions: (i)H, N, S and T are strictly σ-invariant, (ii)N=H∩S∩T, (iii)h(σ|N)=0, (iv) if S/N is non-trivial then it is a finite-dimensional solenoidal group with condition (**) (see the definition in §1), (v) if T/N is non-trivial then it is connected and locally connected, such that X/N splits into a direct sum X/N=H/N⊕S/N⊕T/N. This result characterizes the structure of finite entropy automorphisms. © 1979 Springer-Verlag.
引用
收藏
页码:275 / 285
页数:11
相关论文
共 15 条
[1]  
AOKI N, UNPUBLISHED
[2]  
AOKI N, 1975, MICHIGAN MATH J, V22, P337
[3]  
Eisenberg M., 1966, FUND MATH, V59, P313
[4]  
JACOBS K, 1962, LECTURE NOTES ERGODI
[5]  
KUROSH VG, 1960, THEORY GROUPS, V1
[6]   ON EXPANSIVE TRANSFORMATION GROUPS [J].
LAM, PF .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 150 (01) :131-&
[7]  
LAWTON W, 1973, LECT NOTES MATH
[8]  
LIND D, 1974, ISR J MATH, V10, P186
[9]  
LIND D, 1977, ISRAEL J MATH, V3, P205
[10]  
PONTRJAGIN L, 1946, TOPOLOGICAL GROUPS