STABLE ORNITHINE DECARBOXYLASE IN A RAT HEPATOMA-CELL LINE SELECTED FOR RESISTANCE TO ALPHA-DIFLUOROMETHYLORNITHINE

被引:24
作者
MITCHELL, JLA
HOFF, JA
BAREYALLEYSER, A
机构
[1] Department of Biological Sciences, Northern Illinois University, DeKalb
关键词
D O I
10.1016/0003-9861(91)90600-N
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Ornithine decarboxylase (ODC) is extremely unstable in mammalian cells. This unusual characteristic facilitates rapid fluctuations in the activity of this enzyme in response to variations in its biosynthesis. Unfortunately, very little is known about the mechanism or regulation of this ODC-specific proteolytic pathway. This study describes the production and characterization of a variant of the rat hepatoma HTC cell line that is strikingly deficient in this pathway. This cell variant was induced by selection for growth in stepwise increasing concentrations (up to 10 mm) of the irreversible ODC inhibitor, α-difluoromethylornithine (DFMO). Resistance to this inhibitor appears to result from a combination of elevated (10×) ODC biosynthesis and inhibited degradation, producing greater than a 2000-fold increase in the level of ODC protein. In these variant cells (DH23b) inhibition of protein synthesis by cycloheximide did not result in rapid loss of enzyme activity or ODC protein determined by radioimmunoassay. Pulse-chase studies with [35S]methionine confirmed that this enzyme was not preferentially degraded, even when spermidine was added to the media. ODC purified from the variant cells was found to be identical to the control cell enzyme in size, isoelectric point, substrate binding kinetics, and sensitivity to the inhibitor DFMO. Also, as in the control cells, a major fraction of the ODC molecules extracted from DH23b cells was shown to be phosphorylated on a serine residue. The inability to detect physical or kinetic differences between the parent and the variant cell ODC suggests that the unusual stability of ODC in this cell is associated with a defect in a cellular mechanism for ODC-specific degradation. © 1991.
引用
收藏
页码:143 / 152
页数:10
相关论文
共 53 条
[1]  
BERCOVICH Z, 1989, J BIOL CHEM, V264, P15949
[2]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[3]  
CHOI J, 1981, SOMAT CELL GENET, V7, P219
[4]  
CHOI JH, 1983, J BIOL CHEM, V258, P2601
[5]   ALPHA-MONOFLUOROMETHYL AND ALPHA-DIFLUOROMETHYL PUTRESCINE AS ORNITHINE DECARBOXYLASE INHIBITORS - INVITRO AND INVIVO BIOCHEMICAL-PROPERTIES [J].
DANZIN, C ;
BEY, P ;
SCHIRLIN, D ;
CLAVERIE, N .
BIOCHEMICAL PHARMACOLOGY, 1982, 31 (23) :3871-3878
[6]   POSTTRANSCRIPTIONAL REGULATION OF ORNITHINE DECARBOXYLASE ACTIVITY [J].
DIRCKS, L ;
SLEZYNGER, TC ;
SCHEFFLER, IE .
JOURNAL OF CELLULAR PHYSIOLOGY, 1986, 126 (03) :371-378
[7]   UPTAKE OF ALPHA-DIFLUOROMETHYLORNITHINE BY MOUSE FIBROBLASTS [J].
ERWIN, BG ;
PEGG, AE .
BIOCHEMICAL PHARMACOLOGY, 1982, 31 (17) :2820-2823
[8]   APPEARANCE OF AN ORNITHINE DECARBOXYLASE INHIBITORY PROTEIN UPON ADDITION OF PUTRESCINE TO CELL-CULTURES [J].
FONG, WF ;
HELLER, JS ;
CANELLAKIS, ES .
BIOCHIMICA ET BIOPHYSICA ACTA, 1976, 428 (02) :456-465
[9]   PREVENTION OF RAPID INTRACELLULAR DEGRADATION OF ODC BY A CARBOXYL-TERMINAL TRUNCATION [J].
GHODA, L ;
WETTERS, TV ;
MACRAE, M ;
ASCHERMAN, D ;
COFFINO, P .
SCIENCE, 1989, 243 (4897) :1493-1495
[10]  
GHODA L, 1990, J BIOL CHEM, V265, P11823