FRACTAL POROUS-MEDIA .4. 3-DIMENSIONAL STOKES-FLOW THROUGH RANDOM-MEDIA AND REGULAR FRACTALS

被引:70
作者
LEMAITRE, R
ADLER, PM
机构
[1] Laboratoire d'Aérothermique du CNRS 4ter, Meudon, F-92190, route des Gardes
关键词
fractal; permeability; Porous media; random; three-dimensional;
D O I
10.1007/BF01141990
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The three-dimensional Stokes flow of a Newtonian fluid through random and/or fractal media is numerically determined. The permeability of these media is derived. Results relative to these structures are presented and discussed. The validity of the Carman equation and of a simple scaling argument is questioned. © 1990 Kluwer Academic Publishers.
引用
收藏
页码:325 / 340
页数:16
相关论文
共 13 条
  • [1] Adler P.M., Jacquin C.G., Fractal porous media I: Longitudinal Stokes flow in random carpets, Transport in Porous Media, 2, pp. 553-569, (1987)
  • [2] Sangani A.S., Acrivos A., Slow flow through a periodic array of spheres, Int. J. Multiphase Flow, 8, pp. 343-360, (1982)
  • [3] Zick A.A., Hoy G.M., Stokes flows through periodic arrays of spheres, J. Fluid Mech., 115, (1982)
  • [4] Hasimoto H., On the periodic fundamental solutions of the Stokes equations and their application to viscous flow past a cubic array of spheres, J. Fluid Mech., 5, (1959)
  • [5] Batchelor G.K., Sedimentation in a dilute dispersion of spheres, J. Fluid Mech., 52, pp. 245-268, (1972)
  • [6] Happel J., Viscous flow in multiparticle system: slow motion of fluids relative to beds of spherical particles, AIChE Journal, 4, pp. 197-201, (1958)
  • [7] Peyret R., Taylor T.D., Computational Methods for Fluid Flow, (1985)
  • [8] Mandelbrot B.B., The Fractal Geometry of Nature, (1982)
  • [9] Jacquin C.G., Adler P.M., Fractal porous media II: Geometry of porous geological structures, Transport in Porous Media, 2, pp. 571-596, (1987)
  • [10] Adler P.M., Fractal porous media III: Transversal Stokes flow through random and Sierpinski carpets, Transport in Porous Media, 3, pp. 185-198, (1988)