AN IMPROVED MIXED-LAYER MODEL FOR GEOPHYSICAL APPLICATIONS

被引:512
作者
KANTHA, LH [1 ]
CLAYSON, CA [1 ]
机构
[1] UNIV COLORADO, PROGRAM ATMOSPHER & OCEAN SCI, BOULDER, CO 80309 USA
关键词
D O I
10.1029/94JC02257
中图分类号
P7 [海洋学];
学科分类号
0707 ;
摘要
An improved mixed layer model, based on second-moment closure of turbulence and suitable for application to oceanic and atmospheric mixed layers, is described. The model is tested against observational data from different locations in the global oceans, including high latitudes and tropics. The model belongs to the Mellor-Yamada hierarchy but incorporates recent findings from research on large eddy simulations and second-moment closure. The modified expansion of Galperin, Kantha, Hassid and Rosati (1988) that leads to a much simpler and more robust quasi-equilibrium turbulence model is employed instead of the original Mellor and Yamada (1974) model. Findings from ongoing research at the National Center for Atmospheric Research on large eddy simulations of the atmospheric boundary layer are utilized to improve parameterizations of pressure covariance terms in the second-moment closure. Shortwave solar radiation penetration is given careful treatment in the model so that the model is applicable to investigations of biological and photochemical processes in the upper ocean. But by far the major improvement is in the inclusion of the shear instability-induced mixing in the strongly stratified region below the oceanic mixed layer that leads to a more realistic and reliable mixed layer model that is suitable for application to a variety of geophysical mixed layers and circulation problems. The model appears to predict the mixing in the upper ocean well on a variety of time scales, from event scale storm-induced deepening and diurnal scale variability to seasonal time scales. With proper attention to the heat and salt balances in the upper ocean, it should be possible to use it for simulations of interannual variability as well. While the model validation has been primarily against oceanic mixed layer data sets, it is believed that the improvements can be readily incorporated into a model of the atmospheric boundary layer as well.
引用
收藏
页码:25235 / 25266
页数:32
相关论文
共 132 条
[1]  
ANDRE JC, 1978, J ATMOS SCI, V35, P1861, DOI 10.1175/1520-0469(1978)035<1861:MTHEOT>2.0.CO
[2]  
2
[3]  
ANDRE JC, 1985, J PHYS OCEANOGR, V15, P121, DOI 10.1175/1520-0485(1985)015<0121:MATSOT>2.0.CO
[4]  
2
[5]  
ANDREN A, 1993, J ATMOS SCI, V50, P3366, DOI 10.1175/1520-0469(1993)050<3366:SPCIAN>2.0.CO
[6]  
2
[7]   VERTICAL DISTRIBUTION OF WIND AND TURBULENT EXCHANGE IN A NEUTRAL ATMOSPHERE [J].
BLACKADAR, AK .
JOURNAL OF GEOPHYSICAL RESEARCH, 1962, 67 (08) :3095-+
[8]  
BRAINARD RE, 1994, EOS T AGU, V75, P121
[9]  
BUSINGER JA, 1971, J ATMOS SCI, V28, P181, DOI 10.1175/1520-0469(1971)028<0181:FPRITA>2.0.CO
[10]  
2