A PROBABILISTIC STUDY OF PREFERENCE STRUCTURES IN THE ANALYTIC HIERARCHY PROCESS WITH INTERVAL JUDGMENTS

被引:48
作者
MORENOJIMENEZ, JM [1 ]
VARGAS, LG [1 ]
机构
[1] UNIV PITTSBURGH,JOSEPH M KATZ GRAD SCH BUSINESS,PITTSBURGH,PA 15260
关键词
D O I
10.1016/0895-7177(93)90176-Y
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Here we study the problem of determining the ranking of the alternatives that one should infer when decision makers use interval judgments rather than point estimates in the Analytic Hierarchy Process. How many rankings could one infer from the matrix of interval judgments, and which is the most likely to be selected?
引用
收藏
页码:73 / 81
页数:9
相关论文
共 9 条
[1]   APPROXIMATE ARTICULATION OF PREFERENCE AND PRIORITY DERIVATION [J].
ARBEL, A .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1989, 43 (03) :317-326
[2]  
ARBEL A, 1990, AUG P MCDM C HELD WA
[3]   THE APPROACH TO CONSISTENCY IN THE ANALYTIC HIERARCHY PROCESS [J].
DETURCK, DM .
MATHEMATICAL MODELLING, 1987, 9 (3-5) :345-352
[4]   SCALING METHOD FOR PRIORITIES IN HIERARCHICAL STRUCTURES [J].
SAATY, TL .
JOURNAL OF MATHEMATICAL PSYCHOLOGY, 1977, 15 (03) :234-281
[5]   UNCERTAINTY AND RANK ORDER IN THE ANALYTIC HIERARCHY PROCESS [J].
SAATY, TL ;
VARGAS, LG .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1987, 32 (01) :107-117
[6]   AXIOMATIC FOUNDATION OF THE ANALYTIC HIERARCHY PROCESS [J].
SAATY, TL .
MANAGEMENT SCIENCE, 1986, 32 (07) :841-855
[7]  
Saaty TL., 1990, MULTICRITERIA DECISI
[8]  
SAATY TL, 1981, CONTINUOUS RECURSIVE
[9]  
VARGAS LG, 1982, MATH MODELLING, V3, P69, DOI 10.1016/0270-0255(82)90013-6