RUNGE-KUTTA-NYSTROM INTERPOLANTS FOR THE NUMERICAL-INTEGRATION OF SPECIAL 2ND-ORDER PERIODIC INITIAL-VALUE PROBLEMS

被引:26
作者
SIMOS, TE
机构
[1] Informatics Laboratory, Agricultural University of Athens Iera Odos 75, Athens
关键词
RUNGE-KUTTA-NYSTROM; INTERPOLANTS; PHASE-LAG; OSCILLATING SOLUTIONS;
D O I
10.1016/0898-1221(93)90054-Y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The theory of the phase-lag analysis for Runge-Kutta-Nystrom methods and Runge-Kutta-Nystrom interpolants is developed in this paper. Also a new Runge-Kutta-Nystrom method with interpolation properties is developed to integrate second-order differential equations of the form u''(t) = f(t, u) when they possess an oscillatory solution.
引用
收藏
页码:7 / 15
页数:9
相关论文
共 16 条
[1]   A NOUMEROV-TYPE METHOD WITH MINIMAL PHASE-LAG FOR THE INTEGRATION OF 2ND-ORDER PERIODIC INITIAL-VALUE PROBLEMS .2. EXPLICIT METHOD [J].
CHAWLA, MM ;
RAO, PS .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1986, 15 (03) :329-337
[2]   2-STEP 4TH-ORDER P-STABLE METHODS WITH PHASE-LAG OF ORDER 6 FOR Y''=F(T,Y) [J].
CHAWLA, MM ;
RAO, PS ;
NETA, B .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1986, 16 (02) :233-236
[3]   A NOUMEROV-TYPE METHOD WITH MINIMAL PHASE-LAG FOR THE INTEGRATION OF 2ND ORDER PERIODIC INITIAL-VALUE PROBLEMS [J].
CHAWLA, MM ;
RAO, PS .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1984, 11 (03) :277-281
[6]   CLASSICAL RUNGE-KUTTA-NYSTROM-FORMULAS WITH STEP-SIZE CONTROL FOR DIFFERENTIAL EQUATIONS X=F (T,X) [J].
FEHLBERG, E .
COMPUTING, 1972, 10 (04) :305-315
[7]  
FEHLBERG E, 1969, NASA315 TECHN REP
[8]  
RAPTIS AD, 1990, BIT, V31, P89
[9]  
SIDERIDIS AB, IN PRESS COMPUTING
[10]  
SIDERIDIS AB, IN PRESS J COMPUT AP