WELL-DEFINED PHASE OF SIMPLICIAL QUANTUM-GRAVITY IN 4 DIMENSIONS

被引:23
作者
BEIRL, W
GERSTENMAYER, E
MARKUM, H
RIEDLER, J
机构
[1] Institut für Kernphysik, Technische Universität Wien
来源
PHYSICAL REVIEW D | 1994年 / 49卷 / 10期
关键词
D O I
10.1103/PhysRevD.49.5231
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We analyze Simplicial quantum gravity in four dimensions using the Regge approach. The existence of an entropy-dominated phase with a small negative curvature is investigated in detail. It turns out that observables of the system possess finite expectation values although the Einstein-Hilbert action is unbounded. This well-defined phase is found to be stable for a one-parameter family of measures. A preliminary study indicates that the influence of the lattice size on the average curvature is small. We compare our results with those obtained by dynamical triangulation and find qualitative correspondence.
引用
收藏
页码:5231 / 5239
页数:9
相关论文
共 55 条
[1]  
Agishtein M. E., 1990, International Journal of Modern Physics C (Physics and Computers), V1, P165, DOI 10.1142/S0129183190000086
[2]   SIMULATIONS OF 4-DIMENSIONAL SIMPLICIAL QUANTUM-GRAVITY AS DYNAMIC TRIANGULATION [J].
AGISHTEIN, ME ;
MIGDAL, AA .
MODERN PHYSICS LETTERS A, 1992, 7 (12) :1039-1061
[3]   4-DIMENSIONAL SIMPLICIAL QUANTUM-GRAVITY [J].
AMBJORN, J ;
JURKIEWICZ, J .
PHYSICS LETTERS B, 1992, 278 (1-2) :42-50
[4]  
Ambjorn J., 1992, Nuclear Physics B, Proceedings Supplements, V25A, P25, DOI 10.1016/S0920-5632(05)80004-0
[5]  
Ambjorn J., 1992, Nuclear Physics B, Proceedings Supplements, V25A, P8, DOI 10.1016/S0920-5632(05)80003-9
[6]   FUNCTIONAL MEASURE FOR LATTICE GRAVITY [J].
BANDER, M .
PHYSICAL REVIEW LETTERS, 1986, 57 (15) :1825-1827
[7]  
Beirl W., 1993, Nuclear Physics B, Proceedings Supplements, V30, P764, DOI 10.1016/0920-5632(93)90320-6
[8]   INFLUENCE OF THE MEASURE ON SIMPLICIAL QUANTUM-GRAVITY IN 4-DIMENSIONS [J].
BEIRL, W ;
GERSTENMAYER, E ;
MARKUM, H .
PHYSICAL REVIEW LETTERS, 1992, 69 (05) :713-716
[9]  
BEIRL W, 1993, QUANTUM PHYSICS UNIV
[10]  
BEIRL W, THESIS TU VIENNA