EFFICIENT ALGORITHMS FOR SOLVING CERTAIN NONCONVEX PROGRAMS DEALING WITH THE PRODUCT OF 2 AFFINE FRACTIONAL FUNCTIONS

被引:8
作者
MUU, LD
TAM, BT
SCHAIBLE, S
机构
[1] INST MATH,HANOI 10000,VIETNAM
[2] UNIV CALIF RIVERSIDE,GRAD SCH MANAGEMENT,RIVERSIDE,CA 92521
关键词
PRODUCT OF 2 FRACTIONAL FUNCTIONS; GLOBAL OPTIMIZATION; BRANCH AND BOUND; ADAPTIVE BRANCHING; EFFICIENCY;
D O I
10.1007/BF01096767
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Two algorithms for finding a global minimum of the product of two affine fractional functions over a compact convex set and solving linear fractional programs with an additional constraint defined by the product of two affine fractional functions are proposed. The algorithms are based on branch and bound techniques using an adaptive branching operation which takes place in one-dimensional intervals. Results from numerical experiments show that large scale problems can be efficiently solved by the proposed methods.
引用
收藏
页码:179 / 191
页数:13
相关论文
共 14 条
[1]  
Chames A., 1962, NAV RES LOG, V9, P181
[2]   IMAGE SPACE ANALYSIS OF GENERALIZED FRACTIONAL PROGRAMS [J].
FALK, JE ;
PALOCSAY, SW .
JOURNAL OF GLOBAL OPTIMIZATION, 1994, 4 (01) :63-88
[3]  
HORST R, 1993, GLOBAL OPTIMIZATION
[4]  
Konno H., 1992, RECENT ADV GLOBAL OP, P259
[5]  
KONNO H, 1988, J OPER RES SOC JPN, V32, P143
[6]  
Konno H., 1991, J GLOBAL OPTIM, V1, P65, DOI DOI 10.1007/BF00120666
[7]   A PARAMETRIC SUCCESSIVE UNDERESTIMATION METHOD FOR CONVEX-PROGRAMMING PROBLEMS WITH AN ADDITIONAL CONVEX MULTIPLICATIVE CONSTRAINT [J].
KUNO, T ;
KONNO, H ;
YAMAMOTO, Y .
JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF JAPAN, 1992, 35 (03) :290-299
[8]  
Muu L. D., 1992, Optimization, V24, P57, DOI 10.1080/02331939208843779
[9]  
Muu LD., 1991, J OPTIM THEORY APPL, V70, P337
[10]  
Pardalos P. M., 1990, Optimization, V21, P843, DOI 10.1080/02331939008843615