NECESSARY AND SUFFICIENT CONDITIONS FOR LOCAL 2ND-ORDER IDENTIFIABILITY

被引:7
作者
GOODRICH, RL [1 ]
CAINES, PE [1 ]
机构
[1] HARVARD UNIV,DIV APPL SCI,CAMBRIDGE,MA 02138
关键词
D O I
10.1109/TAC.1979.1101953
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This note presents a new formulation and proof of the result that the Hessian of the likelihood function of an observed process at the point 8 in a parameter space, computed under the assumption that the process is i.i.d. Gaussian, is asymptotically nonsingular if and only if 8 is locally second-order identifiable. That is to say, if and only if the parameters in a neighborhood of 0 are in one-to-one correspondence with the second-order statistics of the observed process. Copyright © 1979 by The Institute of Electrical and Electronics Engineers, Inc.
引用
收藏
页码:125 / 127
页数:3
相关论文
共 11 条
[1]   MAXIMUM LIKELIHOOD ESTIMATION OF PARAMETERS IN MULTIVARIATE GAUSSIAN STOCHASTIC-PROCESSES [J].
CAINES, PE ;
RISSANEN, J .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1974, 20 (01) :102-104
[2]  
CLARK JMC, 1976, JUL JACC PURD U LAF
[3]  
EDISON T, 1973, P JACC COLUMBUS
[4]  
Fisher F. M., 1966, IDENTIFICATION PROBL
[5]   PARAMETRIZATIONS OF LINEAR DYNAMICAL-SYSTEMS - CANONICAL FORMS AND IDENTIFIABILITY [J].
GLOVER, K ;
WILLEMS, JC .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) :640-646
[6]  
Golubitsky M., 1973, STABLE MAPPINGS THEI
[7]  
GOODRICH R, UNPUBLISHED
[8]  
GOODRICH RL, 1978, THESIS HARVARD U
[9]  
KOOPMANS TC, 1950, ANN MATH STAT, V21
[10]  
Ljung L., 1976, Mathematical Programming Studies, P169, DOI 10.1007/BFb0120772