ROBUST ESTIMATION USING THE ROBBINS-MONRO STOCHASTIC-APPROXIMATION ALGORITHM

被引:8
作者
PRICE, EL [1 ]
VANDELINDE, VD [1 ]
机构
[1] JOHNS HOPKINS UNIV,DEPT ELECT ENGN,BALTIMORE,MD 21218
关键词
D O I
10.1109/TIT.1979.1056111
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The problem of minmax estimation of a location parameter Introduced by Huber is considered. It is shown that under general conditions there exists a solution which is a form of the Robbins–Monro stochastic approximation algorithm. This generalizes earlier work by Martin and Masreliez who have given stochastic approximation (SA)-estimate solutions for two particular cases. As with the M-estimate solutions given by Huber, the SA solutions are completely determined by the probability distribution function with least Fisher information in the distribution set used to model the observation errors. ©1979 IEEE
引用
收藏
页码:698 / 704
页数:7
相关论文
共 15 条
[1]  
Ash R. B., 2014, REAL ANAL PROBABILIT
[2]   1972 WALD LECTURE - ROBUST STATISTICS - REVIEW [J].
HUBER, PJ .
ANNALS OF MATHEMATICAL STATISTICS, 1972, 43 (04) :1041-&
[3]   ROBUST ESTIMATION OF LOCATION PARAMETER [J].
HUBER, PJ .
ANNALS OF MATHEMATICAL STATISTICS, 1964, 35 (01) :73-&
[4]   FISHER INFORMATION AND SPLINE INTERPOLATION [J].
HUBER, PJ .
ANNALS OF STATISTICS, 1974, 2 (05) :1029-1033
[5]  
HUBER PJ, 1967, 5TH P BERK S MATH ST, V1, P221
[6]   ASYMPTOTICALLY ROBUST DETECTION OF A KNOWN SIGNAL IN CONTAMINATED NON-GAUSSIAN NOISE [J].
KASSAM, SA ;
THOMAS, JB .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1976, 22 (01) :22-26
[7]   ROBUST ESTIMATION VIA STOCHASTIC APPROXIMATION [J].
MARTIN, RD ;
MASRELIEZ, CJ .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1975, 21 (03) :263-271
[8]   ROBUST DETECTION OF A KNOWN SIGNAL IN NEARLY GAUSSIAN NOISE [J].
MARTIN, RD ;
SCHWARTZ, SC .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1971, 17 (01) :50-+
[9]  
MARTIN RD, 1972, IEEE T INFORM THEORY, V18, P596, DOI 10.1109/TIT.1972.1054890
[10]  
PRICE EL, 1977, THESIS J HOPKINS U