CA2+ AND PH DETERMINE THE INTERACTION OF CHROMAFFIN CELL SCINDERIN WITH PHOSPHATIDYLSERINE AND PHOSPHATIDYLINOSITOL 4,5,-BIPHOSPHATE AND ITS CELLULAR-DISTRIBUTION DURING NICOTINIC-RECEPTOR STIMULATION AND PROTEIN-KINASE-C ACTIVATION

被引:50
作者
DELCASTILLO, AR
VITALE, ML
TRIFARO, JM
机构
[1] Secretory Process Research Program, Department of Pharmacology, University of Ottawa
关键词
D O I
10.1083/jcb.119.4.797
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Nicotinic stimulation and high K+-depolarization of chromaffin cells cause disassembly of cortical filamentous actin networks and redistribution of scinderin, a Ca2+-dependent actin filament-severing protein. These events which are Ca2+-dependent precede exocytosis. Activation of scinderin by Ca2+ may cause disassembly of actin filaments leaving cortical areas of low cytoplasmic viscosity which are the sites of exocytosis (Vitale, M. L., A. Rodriguez Del Castillo, L. Tchakarov, and J.-M. Trifaro. 1991. J. Cell. Biol. 113:1057-1067). It has been suggested that protein kinase C (PKC) regulates secretion. Therefore, the possibility that PKC activation might modulate scinderin redistribution was investigated. Here we report that PMA, a PKC activator, caused scinderin redistribution, although with a slower onset than that induced by nicotine. PMA effects were independent of either extra or intracellular Ca2+ as indicated by measurements of Ca2+ transients, and they were likely to be mediated through direct activation of PKC because inhibitors of the enzyme completely blocked the response to PMA. Scinderin was not phosphorylated by the kinase and further experiments using the Na+/H+ antiport inhibitors and intracellular pH determinations, demonstrated that PKC-mediated scinderin redistribution was a consequence of an increase in intracellular pH. Moreover, it was shown that scinderin binds to phosphatidylserine and phosphatidylinositol 4,5-biphosphate liposomes in a Ca2+-dependent manner, an effect which was modulated by the pH. The results suggest that under resting conditions, cortical scinderin is bound to plasma membrane phospholipids. The results also show that during nicotinic receptor stimulation both a rise in intracellular Ca2+ and pH are observed. The rise in intracellular pH might be the result of the translocation and activation of PKC produced by Ca2+ entry. This also would explain why scinderin redistribution induced by nicotine is partially (26-40%) inhibited by inhibitors of either PKC or the Na+/H+ anti-port. In view of these findings, a model which can explain how scinderin redistribution and activity may be regulated by pH and Ca2+ in resting and stimulated conditions is proposed.
引用
收藏
页码:797 / 810
页数:14
相关论文
共 72 条
[2]   SECRETORY-CELL ACTIN-BINDING PROTEINS - IDENTIFICATION OF A GELSOLIN-LIKE PROTEIN IN CHROMAFFIN CELLS [J].
BADER, MF ;
TRIFARO, JM ;
LANGLEY, OK ;
THIERSE, D ;
AUNIS, D .
JOURNAL OF CELL BIOLOGY, 1986, 102 (02) :636-646
[3]   PHORBOL ESTERS ENHANCE EXOCYTOSIS FROM CHROMAFFIN CELLS BY 2 MECHANISMS [J].
BITTNER, MA ;
HOLZ, RW .
JOURNAL OF NEUROCHEMISTRY, 1990, 54 (01) :205-210
[4]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[5]   CHARACTERIZATION OF PROTEIN KINASE-C AND ITS ROLE IN CATECHOLAMINE SECRETION FROM BOVINE ADRENAL-MEDULLARY CELLS [J].
BROCKLEHURST, KW ;
MORITA, K ;
POLLARD, HB .
BIOCHEMICAL JOURNAL, 1985, 228 (01) :35-42
[6]   REORGANIZATION OF PERIPHERAL ACTIN-FILAMENTS AS A PRELUDE TO EXOCYTOSIS [J].
BURGOYNE, RD ;
CHEEK, TR .
BIOSCIENCE REPORTS, 1987, 7 (04) :281-288
[7]   CONTROL OF EXOCYTOSIS IN ADRENAL CHROMAFFIN CELLS [J].
BURGOYNE, RD .
BIOCHIMICA ET BIOPHYSICA ACTA, 1991, 1071 (02) :174-202
[8]   THE CONTROL OF CYTOSKELETAL ACTIN AND EXOCYTOSIS IN INTACT AND PERMEABILIZED ADRENAL CHROMAFFIN CELLS - ROLE OF CALCIUM AND PROTEIN KINASE-C [J].
BURGOYNE, RD ;
MORGAN, A ;
OSULLIVAN, AJ .
CELLULAR SIGNALLING, 1989, 1 (04) :323-&
[9]  
BURGOYNE RD, 1988, A BENZON S, V25, P612
[10]  
BURNETTE WN, 1981, ANAL BIOCHEM, V112, P195, DOI 10.1016/0003-2697(81)90281-5