NMR STRUCTURE DETERMINATION OF THE ESCHERICHIA-COLI DNAJ MOLECULAR CHAPERONE - SECONDARY STRUCTURE AND BACKBONE FOLD OF THE N-TERMINAL REGION (RESIDUES-2-108) CONTAINING THE HIGHLY CONSERVED J-DOMAIN

被引:144
作者
SZYPERSKI, T
PELLECCHIA, M
WALL, D
GEORGOPOULOS, C
WUTHRICH, K
机构
[1] UNIV UTAH,MED CTR,DEPT CELLULAR VIRAL & MOLEC BIOL,SALT LAKE CITY,UT 84132
[2] CTR MED UNIV GENEVA,DEPT BIOCHIM MED,CH-1211 GENEVA,SWITZERLAND
关键词
D O I
10.1073/pnas.91.24.11343
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
DnaJ from Escherichia coli is a 376-amino acid protein that functions in conjunction with DnaK and GrpE as a chaperone machine. The N-terminal fragment of residues 2-108, DnaJ-(2-108), retains many of the activities of the full-length protein and contains a structural moth, the J domain Of residues 2-72, which is highly conserved in a superfamily of proteins. In this paper, NMR spectroscopy was used to determine the secondary structure and the three-dimensional polypeptide backbone fold of DnaJ (2-108). By using C-13/N-15 doubly labeled DnaJ-(2-108), nearly complete sequence-specific assignments were obtained for H-1, N-15, C-13(alpha), and C-13(beta), and about 40% of the peripheral aliphatic carbon resonances were also assigned. Four cu-helices in polypeptide segments of residues 6-11, 18-31, 41-55, and 61-68 in the J domain were identified by sequential and medium-range nuclear Overhauser effects. For the J domain, the three-dimensional structure was calculated with the program DIANA from an input of 536 nuclear Overhauser effect upper-distance constraints and 52 spin-spin coupling constants. The polypeptide backbone fold is characterized by the formation of an antiparallel bundle of two long helices, residues 18-31 and 41-55, which is stabilized by a hydrophobic core of side chains that are highly conserved In homologous J domain sequences. The Gly/Phe-rich region from residues 77 to 108 is flexibly disordered in solution.
引用
收藏
页码:11343 / 11347
页数:5
相关论文
共 34 条
[1]   H-1-H-1 CORRELATION VIA ISOTROPIC MIXING OF C-13 MAGNETIZATION, A NEW 3-DIMENSIONAL APPROACH FOR ASSIGNING H-1 AND C-13 SPECTRA OF C-13-ENRICHED PROTEINS [J].
BAX, A ;
CLORE, GM ;
GRONENBORN, AM .
JOURNAL OF MAGNETIC RESONANCE, 1990, 88 (02) :425-431
[2]   SEQUENTIAL RESONANCE ASSIGNMENTS IN PROTEIN H-1 NUCLEAR MAGNETIC-RESONANCE SPECTRA - COMPUTATION OF STERICALLY ALLOWED PROTON PROTON DISTANCES AND STATISTICAL-ANALYSIS OF PROTON PROTON DISTANCES IN SINGLE-CRYSTAL PROTEIN CONFORMATIONS [J].
BILLETER, M ;
BRAUN, W ;
WUTHRICH, K .
JOURNAL OF MOLECULAR BIOLOGY, 1982, 155 (03) :321-346
[3]   NATURAL ABUNDANCE N-15 NMR BY ENHANCED HETERONUCLEAR SPECTROSCOPY [J].
BODENHAUSEN, G ;
RUBEN, DJ .
CHEMICAL PHYSICS LETTERS, 1980, 69 (01) :185-189
[4]   A MITOCHONDRIAL HOMOLOG OF BACTERIAL GRPE INTERACTS WITH MITOCHONDRIAL HSP70 AND IS ESSENTIAL FOR VIABILITY [J].
BOLLIGER, L ;
DELOCHE, O ;
GLICK, BS ;
GEORGOPOULOS, C ;
JENO, P ;
KRONIDOU, N ;
HORST, M ;
MORISHIMA, N ;
SCHATZ, G .
EMBO JOURNAL, 1994, 13 (08) :1998-2006
[5]   A MODULE OF THE DNAJ HEAT-SHOCK PROTEINS FOUND IN MALARIA PARASITES [J].
BORK, P ;
SANDER, C ;
VALENCIA, A ;
BUKAU, B .
TRENDS IN BIOCHEMICAL SCIENCES, 1992, 17 (04) :129-129
[6]  
BRAUN D, 1994, IN PRESS J AM CHEM S
[7]   TOPOLOGY AND FUNCTIONAL DOMAINS OF SEC63P, AN ENDOPLASMIC-RETICULUM MEMBRANE-PROTEIN REQUIRED FOR SECRETORY PROTEIN TRANSLOCATION [J].
FELDHEIM, D ;
ROTHBLATT, J ;
SCHEKMAN, R .
MOLECULAR AND CELLULAR BIOLOGY, 1992, 12 (07) :3288-3296
[8]   HETERONUCLEAR 3-DIMENSIONAL NMR-SPECTROSCOPY - A STRATEGY FOR THE SIMPLIFICATION OF HOMONUCLEAR TWO-DIMENSIONAL NMR-SPECTRA [J].
FESIK, SW ;
ZUIDERWEG, ERP .
JOURNAL OF MAGNETIC RESONANCE, 1988, 78 (03) :588-593
[9]   MEASUREMENT OF FAST PROTON-EXCHANGE RATES IN ISOTOPICALLY LABELED COMPOUNDS [J].
GEMMECKER, G ;
JAHNKE, W ;
KESSLER, H .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1993, 115 (24) :11620-11621
[10]  
GEORGOPOULOS C, 1993, ANNU REV CELL BIOL, V9, P601, DOI 10.1146/annurev.cellbio.9.1.601