ANALYSIS OF THE SIMULATION OF SINGLE-PHASE FLOW THROUGH A NATURALLY FRACTURED RESERVOIR

被引:47
作者
ARBOGAST, T [1 ]
机构
[1] UNIV CHICAGO,CHICAGO,IL 60637
关键词
D O I
10.1137/0726002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:12 / 29
页数:18
相关论文
共 14 条
[1]  
ARBOGAST T, 1988, IMA VOLUMES MATH ITS, V11, P23
[2]  
Barenblatt G.I., 1960, J APPL MATH MECH, V24, P852, DOI [10.1016/0021-8928(60)90107-6, DOI 10.1016/0021-8928(60)90107-6]
[3]  
Barenblatt GI., 1960, J APPL MATH MECH, V24, P1286, DOI [DOI 10.1016/0021-8928(60)90107-6, 10.1016/0021-8928(60)90107-6]
[4]   ANALYTIC SOLUTIONS FOR DETERMINING NATURALLY FRACTURED RESERVOIR PROPERTIES BY WELL TESTING [J].
DESWAANO, A .
SOCIETY OF PETROLEUM ENGINEERS JOURNAL, 1976, 16 (03) :117-122
[5]   GALERKIN METHODS FOR PARABOLIC EQUATIONS [J].
DOUGLAS, J ;
DUPONT, T .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1970, 7 (04) :575-&
[6]  
DOUGLAS J, 1987, 9TH P SPE S RES SIM, P271
[7]  
KAZEMI H, 1969, SOC PETROL ENG J, V9, P451
[8]  
Lions J.-L., 1972, NONHOMOGENEOUS BOUND, V2
[9]   CRITERION FOR QUASI-OPTIMALNESS OF RITZ METHOD [J].
NITSCHE, J .
NUMERISCHE MATHEMATIK, 1968, 11 (04) :346-&
[10]  
Peaceman D. W., 1977, FUNDAMENTALS NUMERIC