DRESSING TRANSFORMATIONS AND THE ORIGIN OF THE QUANTUM GROUP SYMMETRIES

被引:31
作者
BABELON, O [1 ]
BERNARD, D [1 ]
机构
[1] CENS,PHYS THEOR SERV,F-91191 GIF SUR YVETTE,FRANCE
关键词
D O I
10.1016/0370-2693(91)90973-T
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We consider the groups of dressing transformations in the Toda theories. We show how the splitting of the chiralities disentangles its action. It thus provides a very simple example illustrating the Lie Poisson structures of these groups. After quantization, dressing transformations generate quantum group symmetries.
引用
收藏
页码:81 / 86
页数:6
相关论文
共 19 条
[1]  
[Anonymous], 1982, PUBL RIMS, DOI DOI 10.2977/PRIMS/1195183298
[2]   EXTENDED CONFORMAL ALGEBRA AND THE YANG-BAXTER EQUATION [J].
BABELON, O .
PHYSICS LETTERS B, 1988, 215 (03) :523-529
[3]   OPERATOR APPROACH TO THE KADOMTSEV-PETVIASHVILI EQUATION - TRANSFORMATION GROUPS FOR SOLITON-EQUATIONS III [J].
DATE, E ;
JIMBO, M ;
KASHIWARA, M ;
MIWA, T .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1981, 50 (11) :3806-3812
[4]   TRANSFORMATION GROUPS FOR SOLITON-EQUATIONS .4. A NEW HIERARCHY OF SOLITON-EQUATIONS OF KP-TYPE [J].
DATE, E ;
JIMBO, M ;
KASHIWARA, M ;
MIWA, T .
PHYSICA D, 1982, 4 (03) :343-365
[5]   KP HIERARCHIES OF ORTHOGONAL AND SYMPLECTIC TYPE - TRANSFORMATION GROUPS FOR SOLITON-EQUATIONS .6. [J].
DATE, E ;
JIMBO, M ;
KASHIWARA, M ;
MIWA, T .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1981, 50 (11) :3813-3818
[6]   VERTEX OPERATORS AND TAU-FUNCTIONS TRANSFORMATION GROUPS FOR SOLITON-EQUATIONS .2. [J].
DATE, E ;
KASHIWARA, M ;
MIWA, T .
PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1981, 57 (08) :387-392
[7]  
DATE E, 1981, P JAPAN ACAD A, V57, P342
[8]  
Drinfeld V.G., 1988, SOV MATH DOKL, V36, P212
[9]  
DRINFELD VG, 1985, DOKL AKAD NAUK SSSR, V32, P254
[10]  
Faddeev L. D, 1988, ALGEBRAIC ANAL, P129