MULTIGRID METHODS FOR THE SOLUTION OF POISSON EQUATION IN A THICK SPHERICAL-SHELL

被引:4
作者
KARPIK, SR
PELTIER, WR
机构
来源
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING | 1991年 / 12卷 / 03期
关键词
MULTIGRID METHODS; ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS; FINITE-ELEMENT METHODS;
D O I
10.1137/0912036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Two multigrid methods designed for the solution of a finite-element discretization of Poisson's equation in spherical geometry are presented and compared. One of these, based upon an approximate local least-squares inverse (LS1), has been previously reported by J. R. Baumgardner and P. O. Frederickson [SIAM J. Numer. Anal., 22 (1985), pp. 1107-1115]; the other, developed by the authors, employs a "mass lumped" line Jacobi smoothing procedure that is entirely new. The new method is shown to be both more economical and considerably more robust than that based upon the LS1 smoothing iteration.
引用
收藏
页码:681 / 694
页数:14
相关论文
共 14 条
[1]  
AKIO A, 1977, METHOD COMPUT PHYS, V17, P173
[2]  
Axelsson O, 1984, COMPUTER SCI APPL MA
[3]  
Baumgardner J.R., 1983, THESIS U CALIFORNIA
[4]   3-DIMENSIONAL TREATMENT OF CONVECTIVE FLOW IN THE EARTHS MANTLE [J].
BAUMGARDNER, JR .
JOURNAL OF STATISTICAL PHYSICS, 1985, 39 (5-6) :501-&
[5]   ICOSAHEDRAL DISCRETIZATION OF THE 2-SPHERE [J].
BAUMGARDNER, JR ;
FREDERICKSON, PO .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1985, 22 (06) :1107-1115
[6]  
BENSON MW, 1980, UTILITAS MATHEMATICA, V22, P127
[7]  
Courant R., 1943, AM MATH SOC B, P1, DOI DOI 10.1090/S0002-9904-1943-07818-4
[8]  
CULLEN MJP, 1974, Q J ROY METEOR SOC, V100, P555
[9]  
FREDERICKSON PO, 1975, 775 LAK U MATH REP
[10]  
GLATZMAIER GA, 1983, J COMPUT PHYS, V55, P519