Numerical simulations show that, because of the spatiotemporal coupling implied by the multidimensional nonlinear Schrodinger equation, self-focusing of ultrashort optical pulses can lead to pulse compression even in the normal-dispersion regime of a nonlinear Kerr medium. We show how this coupling can be further exploited to control the compression by use of spatial phase modulation. Both the compression factor and the position at which the minimum pulse width is realized change with the amplitude of the phase modulation.