APPROXIMATE INERTIAL MANIFOLDS FOR 2D NAVIER-STOKES EQUATIONS

被引:5
作者
CHEN, WH
机构
[1] Department of Mathematics, Indiana University, Bloomington
关键词
D O I
10.1016/0022-247X(92)90048-I
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we provide two approximate inertial manifolds for the 2D Navier-Stokes equations in the periodic case. The first one is an inertial manifold for a dissipative equation obtained by modifying the Navier-Stokes equations, namely, by enlarging the gaps of the eigenvalues of the Stokes operator. The second one, which is explicit and simple, is found by approximating the previous approximate manifold with the Euler-Galerkin scheme. © 1992.
引用
收藏
页码:399 / 418
页数:20
相关论文
共 15 条
[1]  
CONSTANTIN P, 1988, NAVIERSTOKES EQUATIO
[2]  
FABES E, 1988, IMA459 PREPR
[3]   ATTRACTORS FOR THE BENARD-PROBLEM - EXISTENCE AND PHYSICAL BOUNDS ON THEIR FRACTAL DIMENSION [J].
FOIAS, C ;
MANLEY, O ;
TEMAM, R .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1987, 11 (08) :939-967
[4]  
FOIAS C, 1987, CR ACAD SCI I-MATH, V305, P497
[5]  
FOIAS C, 1979, J MATH PURE APPL, V58, P339
[6]   INERTIAL MANIFOLDS FOR NONLINEAR EVOLUTIONARY EQUATIONS [J].
FOIAS, C ;
SELL, GR ;
TEMAM, R .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1988, 73 (02) :309-353
[7]   THE ALGEBRAIC-APPROXIMATION OF ATTRACTORS - THE FINITE DIMENSIONAL CASE [J].
FOIAS, C ;
TEMAM, R .
PHYSICA D, 1988, 32 (02) :163-182
[8]  
Foias C., 1988, Mathematical Modelling and Numerical Analysis, V22, P93
[9]  
FOIAS C, 1983, PHYS D, V6, P158
[10]  
FOIAS C., 1989, J DYN DIFFER EQU, V1, P199, DOI [10.1007/BF01047831, DOI 10.1007/BF01047831]