PHASE-FIELD MODEL - BOUNDARY-LAYER, VELOCITY OF PROPAGATION, AND THE STABILITY SPECTRUM

被引:23
作者
KUPFERMAN, R
SHOCHET, O
BENJACOB, E
SCHUSS, Z
机构
[1] TEL AVIV UNIV, RAYMOND & BEVERLY SACKLER FAC EXACT SCI, IL-69978 TEL AVIV, ISRAEL
[2] TEL AVIV UNIV, SCH MED, IL-69978 TEL AVIV, ISRAEL
来源
PHYSICAL REVIEW B | 1992年 / 46卷 / 24期
关键词
D O I
10.1103/PhysRevB.46.16045
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a study of a phase-field model for diffusion-limited growth. A boundary-layer approximation is used to show that for sharp interface, the first approximation to the phase-field model is the free boundary model, which includes surface tension and a linear kinetic term. The velocity of propagation and the stability spectrum are calculated for a steady-state flat interface. In the case where the phase and the field have similar variation lengths, a stable growth regime is found above a critical value of driving force. We discuss the application of phase-field-like models in the description of the ensemble-average pattern.
引用
收藏
页码:16045 / 16057
页数:13
相关论文
共 48 条
[1]  
AZBEL MY, UNPUB
[2]   NUMERICAL RESULTS ON TWO-DIMENSIONAL DENDRITIC SOLIDIFICATION [J].
BENAMAR, M ;
MOUSSALLAM, B .
PHYSICA D-NONLINEAR PHENOMENA, 1987, 25 (1-3) :155-164
[3]   INTERFACIAL PATTERN-FORMATION FAR FROM EQUILIBRIUM [J].
BENJACOB, E ;
GARIK, P ;
GRIER, D .
SUPERLATTICES AND MICROSTRUCTURES, 1987, 3 (06) :599-615
[4]   EXPERIMENTAL DEMONSTRATION OF THE ROLE OF ANISOTROPY IN INTERFACIAL PATTERN-FORMATION [J].
BENJACOB, E ;
GODBEY, R ;
GOLDENFELD, ND ;
KOPLIK, J ;
LEVINE, H ;
MUELLER, T ;
SANDER, LM .
PHYSICAL REVIEW LETTERS, 1985, 55 (12) :1315-1318
[5]   DYNAMICS OF INTERFACIAL PATTERN-FORMATION [J].
BENJACOB, E ;
GOLDENFELD, N ;
LANGER, JS ;
SCHON, G .
PHYSICAL REVIEW LETTERS, 1983, 51 (21) :1930-1932
[6]   CHARACTERIZATION OF MORPHOLOGY TRANSITIONS IN DIFFUSION-CONTROLLED SYSTEMS [J].
BENJACOB, E ;
GARIK, P ;
MUELLER, T ;
GRIER, D .
PHYSICAL REVIEW A, 1988, 38 (03) :1370-1380
[7]   FORMATION OF A DENSE BRANCHING MORPHOLOGY IN INTERFACIAL GROWTH [J].
BENJACOB, E ;
DEUTSCHER, G ;
GARIK, P ;
GOLDENFELD, ND ;
LAREAH, Y .
PHYSICAL REVIEW LETTERS, 1986, 57 (15) :1903-1906
[8]   THE FORMATION OF PATTERNS IN NONEQUILIBRIUM GROWTH [J].
BENJACOB, E ;
GARIK, P .
NATURE, 1990, 343 (6258) :523-530
[9]   MEAN-FIELD THEORY FOR DIFFUSION-LIMITED AGGREGATION IN LOW DIMENSIONS [J].
BRENER, E ;
LEVINE, H ;
TU, YH .
PHYSICAL REVIEW LETTERS, 1991, 66 (15) :1978-1981
[10]   PATTERN SELECTION IN 2-DIMENSIONAL DENDRITIC GROWTH [J].
BRENER, EA ;
MELNIKOV, VI .
ADVANCES IN PHYSICS, 1991, 40 (01) :53-97