MARSH-WATER COLUMN INTERACTIONS IN 2 LOUISIANA ESTUARIES .1. SEDIMENT DYNAMICS

被引:40
作者
CHILDERS, DL [1 ]
DAY, JW [1 ]
机构
[1] LOUISIANA STATE UNIV,CTR WETLAND RESOURCES,INST COASTAL ECOL,DEPT MARINE SCI,BATON ROUGE,LA 70803
来源
ESTUARIES | 1990年 / 13卷 / 04期
关键词
D O I
10.2307/1351784
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Throughflow marsh flumes were used to measure total sediment exchanges (TSS) between the marshes and water column of two Louisiana estuaries. One, the Barataria Basin estuary, is isolated from significant riverine sediment input. There were significant (p < 0.05) imports of 33.9 to 443 mg TSS m-2 h-1 at the Barataria Basin brackish marsh (BM) site. The Barataria Basin saltmarsh (SM) site exported TSS in two summer samplings, but significant uptake was measured in April (166 mg m-2 h-1) and November (45 mg m-2 h-1) during a winter frontal passage event. The other estuary, Fourleague Bay, receives large sediment inputs from the Atchafalaya River, and TSS imports of 22.5 to 118.5 mg m-2 h-1 were measured at the BM site here. We calculated sediment accumulation from fluxes quantified in marsh flumes using site-specific sedimentological data and flooding regimes at each site. Water level records from May 1987 to April 1989 showed an extended period of unusually low flooding frequencies. As a result, calculated accretion rates were low, with monthly rates of 0.02 to 0.11 mm and -0.06 to 0.06 mm at the Barataria BM and SM sites, respectively, and -0.18 to 0.08 mm at the Fourleague Bay marsh flume site. Actual net sediment deposition, determined by feldspar marker horizon analysis, was 0.7-1.6 mm mo-1 at the Barataria SM and 0.2-1.3 mm mo-1 at the Fourleague Bay BM. Even the highest caluclated accretion rates, based on flume measurements, were half to one order of magnitude lower than actual measured sediment deposition. This discrepancy was probably because: 1) most sedimentation occurs during episodic events, such as Hurricane Gilbert in September 1988, which deposited 3.5-15.5 mm of sediment on the Barataria Basin saltmarsh, or 2) most vertical accretion in Louisiana marshes occurs via deposition of in situ organic matter rather than by influx of allochthonous sediment. Our results affirm the variability of short-term sediment transport and depositional processes, the close coupling of meteorologic forcing and flooding regime to sediment dynamics, and the importance of understanding these interrelated mechanisms in the context of longer term measurements.
引用
收藏
页码:393 / 403
页数:11
相关论文
共 42 条
  • [1] Allen S.E., 1974, CHEM ANAL ECOLOGICAL
  • [2] MISSISSIPPI DELTAIC WETLAND SURVIVAL - SEDIMENTATION VERSUS COASTAL SUBMERGENCE
    BAUMANN, RH
    DAY, JW
    MILLER, CA
    [J]. SCIENCE, 1984, 224 (4653) : 1093 - 1095
  • [3] BAUMANN RH, 1987, ECOLOGY BARATARIA BA, P8
  • [4] RIBBED MUSSELS AND SPARTINA-ALTERNIFLORA PRODUCTION IN A NEW ENGLAND SALT-MARSH
    BERTNESS, MD
    [J]. ECOLOGY, 1984, 65 (06) : 1794 - 1807
  • [5] Blake GR, 1965, METHODS SOIL ANAL 1, V9, P375
  • [6] Boesch D.F., 1983, SUBSIDENCE COASTAL L
  • [7] Boto K.G., 1978, WETLAND FUNCTIONS VA, P479
  • [8] CARBON BALANCE IN A SALT-MARSH - INTERACTIONS OF DIFFUSIVE EXPORT, TIDAL DEPOSITION AND RAINFALL-CAUSED EROSION
    CHALMERS, AG
    WIEGERT, RG
    WOLF, PL
    [J]. ESTUARINE COASTAL AND SHELF SCIENCE, 1985, 21 (06) : 757 - 771
  • [9] CHILDERS D L, 1990, Climate Research, V1, P31, DOI 10.3354/cr001031
  • [10] MARSH-WATER COLUMN INTERACTIONS IN 2 LOUISIANA ESTUARIES .2. NUTRIENT DYNAMICS
    CHILDERS, DL
    DAY, JW
    [J]. ESTUARIES, 1990, 13 (04): : 404 - 417