A RANDOM POLYNOMIAL-TIME ALGORITHM FOR APPROXIMATING THE VOLUME OF CONVEX-BODIES

被引:326
作者
DYER, M
FRIEZE, A
KANNAN, R
机构
[1] UNIV LEEDS,DEPT COMP SCI,LEEDS LS2 9JT,W YORKSHIRE,ENGLAND
[2] CARNEGIE MELLON UNIV,DEPT MATH,PITTSBURGH,PA 15213
关键词
ALGORITHMS; CONVEX SETS; RANDOM WALKS; SAMPLING; VOLUME;
D O I
10.1145/102782.102783
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
A randomized polynomial-time algorithm for approximating the volume of a convex body K in n-dimensional Euclidean space is presented. The proof of correctness of the algorithm relies on recent theory of rapidly mixing Markov chains and isoperimetric inequalities to show that a certain random walk can be used to sample nearly uniformly from within K.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 15 条
[1]  
ALDOUS D, 1983, LECT NOTES MATH, V986, P243
[2]  
[Anonymous], 1988, GEOMETRIC ALGORITHMS, DOI DOI 10.1007/978-3-642-97881-4
[3]  
BARANI I, 1986, 18 ANN ACM S THEOR C, P442
[4]   AN ISOPERIMETRIC INEQUALITY WHICH GENERALIZES THAT OF LEVY-GROMOV,PAUL [J].
BERARD, P ;
BESSON, G ;
GALLOT, S .
INVENTIONES MATHEMATICAE, 1985, 80 (02) :295-308
[5]  
BRODER AZ, 1986, 18TH P ACM S THEOR C, P50
[6]   ON THE COMPLEXITY OF COMPUTING THE VOLUME OF A POLYHEDRON [J].
DYER, ME ;
FRIEZE, AM .
SIAM JOURNAL ON COMPUTING, 1988, 17 (05) :967-974
[7]   A GEOMETRIC INEQUALITY AND THE COMPLEXITY OF COMPUTING VOLUME [J].
ELEKES, G .
DISCRETE & COMPUTATIONAL GEOMETRY, 1986, 1 (04) :289-292
[8]  
Feller W., 1968, INTRO PROBABILITY TH, VII
[9]  
GILBARG D, 1983, ELLIPTIC PARTIAL DIF, P147