A LOWER-BOUND FOR RANDOMIZED LIST UPDATE ALGORITHMS

被引:28
作者
TEIA, B
机构
[1] Graduiertenkolleg Informatik, Universität des Saarlandes, Saarbrücken
关键词
ANALYSIS OF ALGORITHMS;
D O I
10.1016/0020-0190(93)90150-8
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
There has been considerable effort to prove lower bounds for the competitiveness of a randomized list update algorithm. Lower bounds of 1.18 and (by a numerical technique) 1.27 were so far the best result. In this paper we construct a randomized request sequence sigma that no deterministic on-line algorithm can service with an expected cost less than 3/2-5/(n + 5) times the off-line cost (n denoting the length of the list). Using a result of Yao this establishes a new lower bound of 1.5 for the competitiveness of randomized list update algorithms.
引用
收藏
页码:5 / 9
页数:5
相关论文
共 7 条
[1]  
BENDAVID S, 1990, 22ND P ANN ACM S THE, P379
[2]   AMORTIZED ANALYSES OF SELF-ORGANIZING SEQUENTIAL SEARCH HEURISTICS [J].
BENTLEY, JL ;
MCGEOCH, CC .
COMMUNICATIONS OF THE ACM, 1985, 28 (04) :404-411
[3]   2 RESULTS ON THE LIST UPDATE PROBLEM [J].
IRANI, S .
INFORMATION PROCESSING LETTERS, 1991, 38 (06) :301-306
[4]  
IRANI S, 1991, 2ND P ACM SIAM ANN S, P251
[5]  
MANASSE M, 1988, 20TH P ACM STOC, P322
[6]   AMORTIZED EFFICIENCY OF LIST UPDATE AND PAGING RULES [J].
SLEATOR, DD ;
TARJAN, RE .
COMMUNICATIONS OF THE ACM, 1985, 28 (02) :202-208
[7]  
Yao A. C. - C., 1977, 18TH P FOCS, P222