Sleep deprivation is associated with poor cognitive ability and impaired physical health, but the ways in which the brain and body become compromised are not understood. In sleep-deprived rats, plasma total T-4 and T-3 concentrations decline progressively to 78% and 47% below baseline values, respectively, brown adipose tissue 5'-deiodinase type II activity increases 100-fold, and serum TSH values are unknown. The progressive decline in plasma thyroid hormones is associated with a deep negative energy balance despite normal or increased food intake and malnutrition-like symptoms that eventuate in hypothermia and lethal systemic infections. The purpose of the present experiment was to evaluate the probable causes of the low plasma total T-4 during sleep deprivation by measuring the free hormone concentration to minimize binding irregularities and by challenging the pituitary-thyroid axis with iv TRH to determine both 1) the pituitary release of TSH and 2) the thyroidal response of free T-4 (FT4) and free T-3 (FT3) release to the TSH increment. Sleep-deprived rats were awake 91% of the total time compared with 63% of the total time in yoked control rats and 50% of the total time during the baseline period. Cage control comparison rats were permitted to sleep normally. Sustained sleep deprivation resulted in a decline from baseline in plasma FT4 of 73 +/- 6% and FT3 of 45 +/- 12%, which were similar to the declines in total hormone concentrations observed previously; nonstimulated TSH was unchanged. In the yoked and cage control groups, FT4 also declined, but much less than that of the sleep-deprived group. The relative changes in free compared with total hormone concentrations over the study were also less parallel than those in the sleep-deprived group. The plasma TSH response to TRH was similar in all groups across experimental days. The plasma FT4 and FT3 concentrations in sleep-deprived rats increased after TRH-stimulated TSH release to an extent comparable to control values. Taken together, low basal FT4 and FT3 hormone concentrations and unchanged TSH and thyroidal responses to TRH suggest a pituitary or hypothalamic contribution to the hypothyroxinemia during sleep deprivation.