ANALYSIS OF AN ALGORITHM FOR THE GALERKIN-CHARACTERISTIC METHOD

被引:21
作者
BERMEJO, R [1 ]
机构
[1] UNIV BRITISH COLUMBIA,DEPT MATH,VANCOUVER V6T 1W5,BC,CANADA
关键词
D O I
10.1007/BF01385720
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is shown that the interpretation of the Galerkin-Characteristic method for the scalar advection equation in the framework of particle methods yields a computationally efficient algorithm. Such an algorithm consists of updating the dependent variable at the grid points by cubic spline interpolation at the feet of the characteristic curves. The algorithm is unconditionally stable. The error analysis in the maximum norm shows that for sufficiently smooth functions the feet of the characteristic curves are points of high order convergence.
引用
收藏
页码:163 / 194
页数:32
相关论文
共 22 条
[1]  
BARDOS C, 1981, MATH COMPUT, V36, P119, DOI 10.1090/S0025-5718-1981-0595046-3
[2]   END CONDITIONS FOR CUBIC SPLINE INTERPOLATION [J].
RAMACHANDRAN, MP .
APPLIED MATHEMATICS AND COMPUTATION, 1990, 40 (02) :105-116
[3]  
BENQUE JP, 1980, 3RD P INT C FIN EL F
[4]  
Boor CD., 1978, PRACTICAL GUIDE SPLI
[5]  
BORIS JP, 1973, J COMPUT PHYS, V11, P36
[6]  
Ciarlet P. G., 2002, FINITE ELEMENT METHO
[7]   NUMERICAL-METHODS FOR CONVECTION-DOMINATED DIFFUSION-PROBLEMS BASED ON COMBINING THE METHOD OF CHARACTERISTICS WITH FINITE-ELEMENT OR FINITE-DIFFERENCE PROCEDURES [J].
DOUGLAS, J ;
RUSSELL, TF .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (05) :871-885
[8]  
Girault V., 1986, FINITE ELEMENT METHO, V5
[9]  
Hale J. K., 1980, ORDINARY DIFFERENTIA
[10]   FINITE-ELEMENTS AND CHARACTERISTICS APPLIED TO ADVECTION-DIFFUSION EQUATIONS [J].
HASBANI, Y ;
LIVNE, E ;
BERCOVIER, M .
COMPUTERS & FLUIDS, 1983, 11 (02) :71-83