ORDER-TO-CHAOS TRANSITION IN SU(2) YANG-MILLS-HIGGS THEORY

被引:37
作者
KAWABE, T [1 ]
OHTA, S [1 ]
机构
[1] KYUSHU UNIV,COLL GEN EDUC,DEPT PHYS,FUKUOKA 810,JAPAN
来源
PHYSICAL REVIEW D | 1991年 / 44卷 / 04期
关键词
D O I
10.1103/PhysRevD.44.1274
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The onset of dynamical chaos is numerically studied in spherically symmetric time-dependent SU(2) Yang-Mills-Higgs theory. From the induction phenomena and the dependence of the maximal Lyapunov exponents on perturbations to the 't Hooft-Polyakov magnetic-monopole solution we find that there exists a critical value of the perturbation, below which the system is regular. Above this critical value, the phase transition from order to chaos takes place and thus the system exhibits a spatiotemporal chaos which generates a random inhomogeneity of the color fields. Various characteristics of a regular phase and a chaotic one and the configurations of the fields are investigated by means of the real time evolution of the system.
引用
收藏
页码:1274 / 1279
页数:6
相关论文
共 31 条
[1]   CLASSICAL YANG-MILLS FIELDS WITH CONFORMAL-INVARIANCE - FROM EXACT-SOLUTIONS TO QUALITATIVE-ANALYSIS [J].
ANTOINE, JP ;
LAMBERT, D ;
SEPULCHRE, JA .
CLASSICAL AND QUANTUM GRAVITY, 1989, 6 (03) :295-310
[2]  
BOGOMOLNYI EB, 1976, SOV J NUCL PHYS+, V23, P355
[3]  
CHIRIKOV BV, 1982, SOV J NUCL PHYS+, V36, P908
[4]  
CHIRIKOV BV, 1981, JETP LETT+, V34, P163
[5]  
FERMI E, 1955, LA1940 LOS AL SCI LA
[6]   ONSET OF CHAOS IN THE CLASSICAL SU(2) YANG-MILLS THEORY [J].
FURUSAWA, T .
NUCLEAR PHYSICS B, 1987, 290 (04) :469-479
[7]   ONSET OF DYNAMICAL CHAOS IN TOPOLOGICALLY MASSIVE GAUGE-THEORIES [J].
GIANSANTI, A ;
SIMIC, PD .
PHYSICAL REVIEW D, 1988, 38 (04) :1352-1355
[8]   MAGNETIC MONOPOLES IN GAUGE FIELD-THEORIES [J].
GODDARD, P ;
OLIVE, DI .
REPORTS ON PROGRESS IN PHYSICS, 1978, 41 (09) :1357-1437
[9]   COMPUTER STUDIES ON APPROACH TO THERMAL EQUILIBRIUM IN COUPLED ANHARMONIC OSCILLATORS .I. 2 DIMENSIONAL CASE [J].
HIROOKA, H ;
SAITO, N .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1969, 26 (03) :624-&
[10]   NON-INTEGRABILITY OF SU(2) YANG-MILLS AND YANG-MILLS-HIGGS SYSTEMS [J].
JOY, MP ;
SABIR, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (23) :5153-5159