SOLUTION OF 2 PROBLEMS ON WAVELETS

被引:52
作者
AUSCHER, P [1 ]
机构
[1] UNIV RENNES 1,IRMAR,F-35042 RENNES,FRANCE
关键词
WAVELET BASIS; MULTIRESOLUTION ANALYSIS; HARDY SPACE; CALDERON-ZYGMUND OPERATOR; VECTOR BUNDLE; INDEX THEORY; SIMPLE CONNECTIVITY;
D O I
10.1007/BF02921675
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We solve two problems on wavelets. The first is the nonexistence of a regular wavelet that generates a wavelet basis for the Hardy space H-2(R). The second is the existence, given any regular wavelet basis for L(2)(R), of a Multi-Resolution Analysis generating the wavelet. Moreover, we construct a regular scaling function for this Multi-Resolution Analysis. The needed regularity conditions are very mild and our proofs apply to both the orthonormal and biorthogonal situations. Extensions to more general cases in dimension 1 and higher are given. In particular, we show in dimension larger than 2 that a regular wavelet basis for L(2)(R(n)) arises from a Multi-Resolution Analysis that is regular module the action of a unitary operator, which is when n = 2 a Calderon-Zygmund operator of convolution type.
引用
收藏
页码:181 / 236
页数:56
相关论文
共 29 条
[1]  
AUSCHER P, 1992, CR ACAD SCI I-MATH, V315, P769
[2]  
AUSCHER P, 1992, CR ACAD SCI I-MATH, V315, P1227
[3]   BAND-LIMITED WAVELETS [J].
BONAMI, A ;
SORIA, F ;
WEISS, G .
JOURNAL OF GEOMETRIC ANALYSIS, 1993, 3 (06) :543-578
[4]   BIORTHOGONAL BASES OF COMPACTLY SUPPORTED WAVELETS [J].
COHEN, A ;
DAUBECHIES, I ;
FEAUVEAU, JC .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1992, 45 (05) :485-560
[5]   WAVELETS, MULTISCALE ANALYSIS AND QUADRATURE MIRROR FILTERS [J].
COHEN, A .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1990, 7 (05) :439-459
[6]   EXTENSIONS OF HARDY SPACES AND THEIR USE IN ANALYSIS [J].
COIFMAN, RR ;
WEISS, G .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 83 (04) :569-645
[7]  
Daubechies I., 1992, CBMS NSF REGIONAL C
[8]   DECOMPOSITION OF BESOV-SPACES [J].
FRAZIER, M ;
JAWERTH, B .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1985, 34 (04) :777-799
[9]   WAVELETS IN WANDERING SUBSPACES [J].
GOODMAN, TNT ;
LEE, SL ;
TANG, WS .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 338 (02) :639-654
[10]  
GRIPENBERG G, NECESSARY SUFFICIENT