STABILIZABILITY OF DISCRETE-TIME NONLINEAR-SYSTEMS

被引:18
作者
TSINIAS, J [1 ]
机构
[1] NATL TECH UNIV ATHENS,DEPT MATH,GR-15773 ATHENS,GREECE
关键词
D O I
10.1093/imamci/6.2.135
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
引用
收藏
页码:135 / 150
页数:16
相关论文
共 17 条
[1]   STABILIZATION OF A CLASS OF NONLINEAR-SYSTEMS BY A SMOOTH FEEDBACK-CONTROL [J].
AEYELS, D .
SYSTEMS & CONTROL LETTERS, 1985, 5 (05) :289-294
[2]   THE LOCAL STABILIZABILITY PROBLEM FOR NONLINEAR-SYSTEMS [J].
BACCIOTTI, A .
IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 1988, 5 (01) :27-39
[3]   Stabilizability of Finite- and Infinite-Dimensional Bilinear Systems [J].
Banks, S. P. .
IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 1986, 3 (04) :255-271
[4]  
FIESS M, 1980, IEEE T AC, V25, P984
[5]   STABILITY OF DISCRETE-TIME BILINEAR-SYSTEMS WITH CONSTANT INPUTS [J].
GOUNARIDISMINAIDIS, C ;
KALOUPTSIDIS, N .
INTERNATIONAL JOURNAL OF CONTROL, 1986, 43 (02) :663-669
[6]  
GRIZZLE JW, 1985, IEEE TAC, V30, P686
[7]   STABILIZING CONTROLLERS FOR BILINEAR-SYSTEMS [J].
GUTMAN, PO .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1981, 26 (04) :917-922
[8]   CONTROLLABILITY AND STABILITY [J].
JURDJEVIC, V ;
QUINN, JP .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1978, 28 (03) :381-389
[9]   STABILITY IMPROVEMENT OF NONLINEAR-SYSTEMS BY FEEDBACK [J].
KALOUPTSIDIS, N ;
TSINIAS, J .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1984, 29 (04) :364-367
[10]   APPROXIMATE AND LOCAL LINEARIZABILITY OF NONLINEAR DISCRETE-TIME-SYSTEMS [J].
LEE, HG ;
MARCUS, SI .
INTERNATIONAL JOURNAL OF CONTROL, 1986, 44 (04) :1103-1124